已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Finite element simulation and experimental investigation of in-situ laser-assisted diamond turning of monocrystalline silicon

单晶硅 原位 钻石 金刚石车削 材料科学 激光器 有限元法 光学 光电子学 冶金 化学 物理 工程类 结构工程 有机化学
作者
Wangjie Hu,Xuesen Zhao,Tao Sun,Jun Jie Zhang
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6641/ad40c8
摘要

Abstract While the effectiveness of in-situ laser-assisted diamond turning (In-LAT) for promoting the ductile machinability of monocrystalline silicon has been demonstrated, the underlying cutting mechanisms remain inadequately understood. In this study, we investigate the fundamental mechanisms involved in the In-LAT of monocrystalline silicon by finite element simulations and experiments. Specifically, a finite element model of In-LAT of monocrystalline silicon is developed, which incorporates a Drucker-Prager constitutive model to address the brittle fracture of the material, as well as temperature-dependent materials properties to address the thermal softening effect. Furthermore, experiments of In-LAT of monocrystalline silicon are conducted with the self-developed In-LAT device, including tapering cutting and end face cutting. Simulation results demonstrate that In-LAT significantly increases the critical depth of cut for the brittle-to-ductile transition of monocrystalline silicon in tapering cutting mode by 72.2% compared to conventional cutting, accompanied with significantly reduced cutting forces, continuous chip profile and reduced surface brittle damage. The promotion of ductile machinability of monocrystalline silicon under In-LAT is attributed to the reduction and dispersion of stress in the cutting zone, which is in contrast to the significant stress concentration at the rake face and cutting edge in conventional cutting. And simulation results also provide an optimal temperature field of 900 K for the In-LAT of monocrystalline silicon, above which the excessive plastic flow accompanied by thermal accumulation results into deteriorated surface roughness. These findings provide valuable insights for understanding the cutting mechanisms of In-LAT and the parameter optimization for In-LAT application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助slz采纳,获得10
1秒前
song完成签到 ,获得积分10
1秒前
1秒前
2秒前
大大大忽悠完成签到 ,获得积分10
2秒前
XCY完成签到,获得积分10
2秒前
枫泾完成签到,获得积分10
3秒前
SciGPT应助suodeheng采纳,获得20
3秒前
3秒前
3秒前
4秒前
魔幻安南完成签到 ,获得积分10
4秒前
6秒前
sswbzh应助yuebaoji采纳,获得50
8秒前
Z66发布了新的文献求助10
9秒前
hehexuexi1发布了新的文献求助10
9秒前
9秒前
11秒前
今后应助陶醉紫菜采纳,获得10
11秒前
鹿笙完成签到 ,获得积分10
13秒前
科研通AI6.1应助小鱼采纳,获得10
14秒前
jjjj完成签到,获得积分10
15秒前
馍馍发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
hh完成签到,获得积分10
17秒前
qianqian完成签到,获得积分10
17秒前
科研通AI6.1应助chenyuns采纳,获得10
18秒前
大帅比完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779546
求助须知:如何正确求助?哪些是违规求助? 5648402
关于积分的说明 15451994
捐赠科研通 4910795
什么是DOI,文献DOI怎么找? 2642900
邀请新用户注册赠送积分活动 1590549
关于科研通互助平台的介绍 1544981