热液循环
废物管理
环境科学
化学
化学工程
工程类
作者
Qi Li,Dejun Sun,Feng Chen,Haoran Xu,Zhenghe Xu
标识
DOI:10.1016/j.jhazmat.2024.134358
摘要
Hydrothermal treatment (HT) can effectively dehydrate and reduce oily sludge (OS) volume, but the resulting hydrothermal oily sludge (HOS) presents greater challenges for washing than the initial oily sludge (IOS). This study examines the effects of HT on OS by analyzing changes in water, oil, and solid. Results indicate that HT considerably decreases the water content in OS while increasing resin and asphaltenes contents. In addition, condensation, side-chain scission, and oxidation reactions occur during the HT process, resulting in coking, agglomeration, and an increase in oxygen-containing groups. This increase, further confirmed by X-ray photoelectron spectroscopy (XPS), enhances the interaction between oil and solids. Calcite, the most prevalent solid-phase component, may form a calcium bridge with the oxygen-containing groups. Moreover, HT reduces the solid particle size, thereby increasing the oil-solid contact area. Interestingly, the process of deasphalting diminishes the interaction between oil and solids, facilitating sludge washing. After washing, the residual oil content in HOS is reduced to less than 0.34%. This study elucidates why HOS is challenging to separate from oil and solids and introduces a novel method that combines dodecylbenzene sulfonic acid (DBSA)-assisted heptane deasphalting with conventional washing techniques. This method shows promise for applications in OS affected by weathering processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI