Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data

遥感 激光雷达 比例(比率) 环境科学 计算机科学 地质学 地理 地图学
作者
Shuqun Cai,Wuming Zhang,Shiming Zhang,Sisi Yu,Xinlian Liang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:306: 114121-114121
标识
DOI:10.1016/j.rse.2024.114121
摘要

Branch architecture plays an important role in forest physical and ecological processes, greatly affecting forest spatial structure and the accumulation, production and distribution of organic carbon. Very few studies have quantified the branch architecture of large-scale forest plots, due to the lack of high-resolution large-scale three-dimensional data. The emergence of unmanned aerial vehicle-light detecting and ranging (UAV-LiDAR) provides great potential to overcome this limitation. However, due to insufficient quality of UAV-LiDAR data for branch reconstruction, existing algorithms remain tremendously challenging. We propose an effective branch reconstruction algorithm for UAV-LiDAR data to quantify branch architecture. First, individual branches are extracted using a region growth method that is guided by the branch growth direction and local smoothness constraint. Second, incorrect branches are eliminated based on three pieces of branch features, i.e., specific angles between branches at the same whorl, specific height differences between branches at different whorls, and the growth pattern of branches from the stem outward, reaching maximum distances at tips. Finally, branches are reconstructed using polynomial fitting, and branch architecture parameters are extracted based on branch models. The proposed algorithm simplifies branch reconstruction by skipping the separation of photosynthetic and non-photosynthetic components. It also adapts well to UAV-LiDAR point clouds, generating more realistic reconstructions. The algorithm successfully identified non-photosynthetic components in experiments involving 240 trees, including Scots pine, Norway spruce, and Radiata pine. The average overall accuracy for these three species was 0.88, 0.76, and 0.74, respectively. The proposed algorithm was tested for branch reconstruction using UAV-LiDAR data from a two-hectare Larix principis-rupprechtii plot. The accuracy of branch identification and parameter extraction accuracy were evaluated branch by branch based on the individual branches manually identified in terrestrial laser scanning data. Results showed the F-score of branch and stem identification was 0.58 and 1. The relative RMSE of branch length and angle was 36.87% and 18.3%, and ones of stem length and diameter were 1.46% and 6.16%. The proposed algorithm outperformed the well-known reconstruction algorithms, including TreeQSM, AdTree and Laplacian-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuqian完成签到,获得积分10
1秒前
Hou完成签到 ,获得积分10
1秒前
反杀闰土的猹完成签到 ,获得积分20
1秒前
所所应助cc采纳,获得10
2秒前
邵裘完成签到,获得积分10
2秒前
丘比特应助yin采纳,获得10
2秒前
3秒前
3秒前
3秒前
希望天下0贩的0应助sss采纳,获得20
3秒前
拼搏向前发布了新的文献求助10
3秒前
紫罗兰花海完成签到 ,获得积分10
4秒前
琪琪完成签到,获得积分10
5秒前
5秒前
爆米花应助高兴藏花采纳,获得10
5秒前
orixero应助Rrr采纳,获得10
5秒前
6秒前
张今天也要做科研呀完成签到,获得积分10
6秒前
humorlife完成签到,获得积分10
6秒前
打打应助给我找采纳,获得10
7秒前
酷波er应助谦让的含海采纳,获得10
7秒前
7秒前
shrike发布了新的文献求助10
7秒前
心灵美半邪完成签到 ,获得积分10
9秒前
wanci应助星晴遇见花海采纳,获得10
9秒前
9秒前
MILL完成签到,获得积分20
9秒前
卡卡发布了新的文献求助10
9秒前
今后应助九城采纳,获得10
10秒前
10秒前
我是125应助凶狠的乐巧采纳,获得10
10秒前
10秒前
开心的火龙果完成签到,获得积分10
11秒前
科研通AI2S应助长夜变清早采纳,获得10
11秒前
su发布了新的文献求助10
11秒前
明理的访风完成签到,获得积分10
11秒前
小马哥完成签到,获得积分10
12秒前
12秒前
jy发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794