Branch architecture quantification of large-scale coniferous forest plots using UAV-LiDAR data

遥感 激光雷达 比例(比率) 环境科学 计算机科学 地质学 地理 地图学
作者
Shuqun Cai,Wuming Zhang,Shiming Zhang,Sisi Yu,Xinlian Liang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:306: 114121-114121
标识
DOI:10.1016/j.rse.2024.114121
摘要

Branch architecture plays an important role in forest physical and ecological processes, greatly affecting forest spatial structure and the accumulation, production and distribution of organic carbon. Very few studies have quantified the branch architecture of large-scale forest plots, due to the lack of high-resolution large-scale three-dimensional data. The emergence of unmanned aerial vehicle-light detecting and ranging (UAV-LiDAR) provides great potential to overcome this limitation. However, due to insufficient quality of UAV-LiDAR data for branch reconstruction, existing algorithms remain tremendously challenging. We propose an effective branch reconstruction algorithm for UAV-LiDAR data to quantify branch architecture. First, individual branches are extracted using a region growth method that is guided by the branch growth direction and local smoothness constraint. Second, incorrect branches are eliminated based on three pieces of branch features, i.e., specific angles between branches at the same whorl, specific height differences between branches at different whorls, and the growth pattern of branches from the stem outward, reaching maximum distances at tips. Finally, branches are reconstructed using polynomial fitting, and branch architecture parameters are extracted based on branch models. The proposed algorithm simplifies branch reconstruction by skipping the separation of photosynthetic and non-photosynthetic components. It also adapts well to UAV-LiDAR point clouds, generating more realistic reconstructions. The algorithm successfully identified non-photosynthetic components in experiments involving 240 trees, including Scots pine, Norway spruce, and Radiata pine. The average overall accuracy for these three species was 0.88, 0.76, and 0.74, respectively. The proposed algorithm was tested for branch reconstruction using UAV-LiDAR data from a two-hectare Larix principis-rupprechtii plot. The accuracy of branch identification and parameter extraction accuracy were evaluated branch by branch based on the individual branches manually identified in terrestrial laser scanning data. Results showed the F-score of branch and stem identification was 0.58 and 1. The relative RMSE of branch length and angle was 36.87% and 18.3%, and ones of stem length and diameter were 1.46% and 6.16%. The proposed algorithm outperformed the well-known reconstruction algorithms, including TreeQSM, AdTree and Laplacian-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助芦同学采纳,获得10
1秒前
bkagyin应助科研八戒采纳,获得10
2秒前
香蕉茹妖完成签到,获得积分10
4秒前
宗嘻嘻发布了新的文献求助10
5秒前
Singularity应助CIOOICO1采纳,获得10
6秒前
6秒前
7秒前
xinlei2023发布了新的文献求助10
7秒前
9秒前
CipherSage应助整齐的涵山采纳,获得10
10秒前
10秒前
壳聚糖座下第一牛马完成签到,获得积分10
11秒前
11秒前
中午饭完成签到 ,获得积分10
11秒前
曾玲萍发布了新的文献求助10
11秒前
12秒前
course发布了新的文献求助10
13秒前
biancaliu发布了新的文献求助10
14秒前
NexusExplorer应助Jodie采纳,获得30
14秒前
俊逸夜山发布了新的文献求助10
15秒前
读研好难发布了新的文献求助10
15秒前
快乐水完成签到,获得积分10
16秒前
16秒前
沉思、发布了新的文献求助10
16秒前
吴兰田发布了新的文献求助30
17秒前
20秒前
852应助姜月采纳,获得10
20秒前
RR发布了新的文献求助10
21秒前
我是老大应助科研八戒采纳,获得10
23秒前
鄂老三完成签到,获得积分10
25秒前
25秒前
27秒前
28秒前
豌豆发布了新的文献求助10
28秒前
沉思、完成签到,获得积分10
29秒前
31秒前
坚强亦丝应助海人采纳,获得10
31秒前
小柯应助海人采纳,获得10
31秒前
32秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469