LogGT: Cross-system log anomaly detection via heterogeneous graph feature and transfer learning

计算机科学 异常检测 图形 加权 人工智能 数据挖掘 模式识别(心理学) 理论计算机科学 医学 放射科
作者
Peipeng Wang,Xiuguo Zhang,Zhiying Cao,Weigang Xu,Wangwang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:251: 124082-124082 被引量:17
标识
DOI:10.1016/j.eswa.2024.124082
摘要

Automated system log anomaly detection plays a crucial role in ensuring service reliability. Existing methods incompletely utilize structured log entries, resulting in the loss of key information such as components and time. Besides, due to the limitations of labeled data, models trained by a single system are difficult to apply to other systems. Therefore, we propose a cross-system log anomaly detection method named LogGT, which simultaneously models log events, components and time, leveraging labeled system knowledge to achieve anomaly detection in unlabeled systems. Specifically, we firstly design a heterogeneous graph to accurately represent the interactions between different events and components in the log sequence. Then, in order to avoid noise interference and conduct cross-system semantic analysis, we employ BERT to extract log sentence vectors, and Normalizing Flow is used to optimize them for smoother node embedding. A Graph Transformer Architecture with Time Intervals (GTAT) is proposed to model heterogeneous graphs by integrating time feature, allowing for a comprehensive analyze of execution order and time anomalies. Additionally, we design a semantic weighting method and utilize a novel domain-adapted transfer learning technology to effectively transfer the heterogeneous graph features of the source system to the target system. Experimental results demonstrate that LogGT outperforms five log anomaly detection methods, achieving an average anomaly detection F1-score higher than 0.95. Moreover, the AUC value of GTAT exceeds the sequence model by more than 2.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助KerwinLLL采纳,获得10
2秒前
松鼠鳜鱼完成签到,获得积分10
3秒前
CodeCraft应助王晨旭采纳,获得10
3秒前
大力云朵完成签到,获得积分10
3秒前
Silence完成签到,获得积分0
4秒前
神勇若雁完成签到,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
5秒前
乐乐应助不争馒头争口气采纳,获得10
5秒前
5秒前
CipherSage应助hjx采纳,获得30
7秒前
ww完成签到,获得积分10
8秒前
星辰大海应助Ventus采纳,获得10
9秒前
Genius发布了新的文献求助10
11秒前
好吃完成签到,获得积分20
11秒前
kitty发布了新的文献求助10
12秒前
吡嗪发布了新的文献求助10
12秒前
科研通AI2S应助hkh采纳,获得10
13秒前
yuli应助hkh采纳,获得10
13秒前
浮游应助hkh采纳,获得10
13秒前
浮游应助hkh采纳,获得10
13秒前
Zx_1993应助hkh采纳,获得10
13秒前
浮游应助hkh采纳,获得10
13秒前
科研通AI2S应助hkh采纳,获得10
13秒前
浮游应助hkh采纳,获得10
13秒前
浮游应助hkh采纳,获得10
13秒前
手抓饼啊发布了新的文献求助10
13秒前
浮游应助hkh采纳,获得10
13秒前
14秒前
隐形曼青应助木木采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
123木头人发布了新的文献求助10
17秒前
神勇若雁发布了新的文献求助10
17秒前
斧王发布了新的文献求助10
18秒前
浮游应助kitty采纳,获得10
20秒前
刻苦的糖豆完成签到,获得积分10
22秒前
hey完成签到,获得积分10
24秒前
锅里有两条鱼完成签到 ,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663