LogGT: Cross-system log anomaly detection via heterogeneous graph feature and transfer learning

计算机科学 异常检测 图形 加权 人工智能 数据挖掘 模式识别(心理学) 理论计算机科学 医学 放射科
作者
Peipeng Wang,Xiuguo Zhang,Zhiying Cao,Weigang Xu,Wangwang Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 124082-124082 被引量:2
标识
DOI:10.1016/j.eswa.2024.124082
摘要

Automated system log anomaly detection plays a crucial role in ensuring service reliability. Existing methods incompletely utilize structured log entries, resulting in the loss of key information such as components and time. Besides, due to the limitations of labeled data, models trained by a single system are difficult to apply to other systems. Therefore, we propose a cross-system log anomaly detection method named LogGT, which simultaneously models log events, components and time, leveraging labeled system knowledge to achieve anomaly detection in unlabeled systems. Specifically, we firstly design a heterogeneous graph to accurately represent the interactions between different events and components in the log sequence. Then, in order to avoid noise interference and conduct cross-system semantic analysis, we employ BERT to extract log sentence vectors, and Normalizing Flow is used to optimize them for smoother node embedding. A Graph Transformer Architecture with Time Intervals (GTAT) is proposed to model heterogeneous graphs by integrating time feature, allowing for a comprehensive analyze of execution order and time anomalies. Additionally, we design a semantic weighting method and utilize a novel domain-adapted transfer learning technology to effectively transfer the heterogeneous graph features of the source system to the target system. Experimental results demonstrate that LogGT outperforms five log anomaly detection methods, achieving an average anomaly detection F1-score higher than 0.95. Moreover, the AUC value of GTAT exceeds the sequence model by more than 2.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤冰彤发布了新的文献求助10
刚刚
细心的雁玉完成签到,获得积分10
刚刚
刚刚
很菜的研究生完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
研友_VZG7GZ应助小宇子采纳,获得10
3秒前
河河完成签到,获得积分10
3秒前
小马甲应助believe采纳,获得10
4秒前
5秒前
从容的凛完成签到,获得积分10
5秒前
cyndifly1314完成签到 ,获得积分10
5秒前
qsxy发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
hqq发布了新的文献求助10
6秒前
一二三发布了新的文献求助10
7秒前
zd发布了新的文献求助10
8秒前
9秒前
yifei完成签到,获得积分10
9秒前
辛勤冰彤完成签到,获得积分10
9秒前
星星之火发布了新的文献求助10
9秒前
Orange应助林钰浩采纳,获得10
10秒前
游舒平发布了新的文献求助10
11秒前
华仔应助三秋采纳,获得10
11秒前
博修发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
yangzai发布了新的文献求助10
13秒前
13秒前
liberty发布了新的文献求助10
14秒前
15秒前
卡卡西应助科研通管家采纳,获得30
16秒前
nemuruinu应助科研通管家采纳,获得20
16秒前
李健应助科研通管家采纳,获得20
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
sh完成签到,获得积分10
16秒前
speak发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152