LogGT: Cross-system log anomaly detection via heterogeneous graph feature and transfer learning

计算机科学 异常检测 图形 特征(语言学) 学习迁移 人工智能 数据挖掘 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Peipeng Wang,Xiuguo Zhang,Zhiying Cao,Weigang Xu,Wangwang Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 124082-124082 被引量:2
标识
DOI:10.1016/j.eswa.2024.124082
摘要

Automated system log anomaly detection plays a crucial role in ensuring service reliability. Existing methods incompletely utilize structured log entries, resulting in the loss of key information such as components and time. Besides, due to the limitations of labeled data, models trained by a single system are difficult to apply to other systems. Therefore, we propose a cross-system log anomaly detection method named LogGT, which simultaneously models log events, components and time, leveraging labeled system knowledge to achieve anomaly detection in unlabeled systems. Specifically, we firstly design a heterogeneous graph to accurately represent the interactions between different events and components in the log sequence. Then, in order to avoid noise interference and conduct cross-system semantic analysis, we employ BERT to extract log sentence vectors, and Normalizing Flow is used to optimize them for smoother node embedding. A Graph Transformer Architecture with Time Intervals (GTAT) is proposed to model heterogeneous graphs by integrating time feature, allowing for a comprehensive analyze of execution order and time anomalies. Additionally, we design a semantic weighting method and utilize a novel domain-adapted transfer learning technology to effectively transfer the heterogeneous graph features of the source system to the target system. Experimental results demonstrate that LogGT outperforms five log anomaly detection methods, achieving an average anomaly detection F1-score higher than 0.95. Moreover, the AUC value of GTAT exceeds the sequence model by more than 2.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
芦苇秋完成签到 ,获得积分10
6秒前
6秒前
所所应助帅比杨哥采纳,获得10
8秒前
r_ringaaa发布了新的文献求助10
8秒前
8秒前
9秒前
英俊的铭应助dungaway采纳,获得10
9秒前
子小雨记发布了新的文献求助10
11秒前
11秒前
久久丫完成签到 ,获得积分10
12秒前
12秒前
香蕉觅云应助yumi采纳,获得10
13秒前
科目三应助淡定的饼干采纳,获得10
16秒前
iWatchTheMoon应助YYY666采纳,获得10
16秒前
SOBER发布了新的文献求助10
17秒前
18秒前
久久丫关注了科研通微信公众号
18秒前
无语的如音完成签到,获得积分10
18秒前
rrrick发布了新的文献求助10
19秒前
20秒前
Ava应助haowu采纳,获得10
20秒前
斯文败类应助haowu采纳,获得10
20秒前
我是老大应助haowu采纳,获得10
20秒前
赘婿应助haowu采纳,获得10
21秒前
Singularity应助haowu采纳,获得10
21秒前
oceanao应助haowu采纳,获得10
21秒前
Singularity应助haowu采纳,获得10
21秒前
oceanao应助haowu采纳,获得10
21秒前
充电宝应助haowu采纳,获得10
21秒前
oceanao应助haowu采纳,获得10
21秒前
叉叉茶完成签到 ,获得积分10
22秒前
帅比杨哥发布了新的文献求助10
22秒前
yadi完成签到,获得积分10
23秒前
apple9515发布了新的文献求助10
23秒前
科研通AI2S应助yaoyh_gc采纳,获得10
23秒前
听白完成签到 ,获得积分10
24秒前
dungaway发布了新的文献求助10
25秒前
26秒前
CipherSage应助Diana采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187