Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction

自回归模型 比例(比率) 计算机科学 可扩展性 图像(数学) 星型 人工智能 计量经济学 自回归积分移动平均 机器学习 数学 时间序列 地图学 地理 操作系统
作者
Keyu Tian,Yi Jiang,Zehuan Yuan,Bingyue Peng,Liwei Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.02905
摘要

We present Visual AutoRegressive modeling (VAR), a new generation paradigm that redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction" or "next-resolution prediction", diverging from the standard raster-scan "next-token prediction". This simple, intuitive methodology allows autoregressive (AR) transformers to learn visual distributions fast and generalize well: VAR, for the first time, makes AR models surpass diffusion transformers in image generation. On ImageNet 256x256 benchmark, VAR significantly improve AR baseline by improving Frechet inception distance (FID) from 18.65 to 1.80, inception score (IS) from 80.4 to 356.4, with around 20x faster inference speed. It is also empirically verified that VAR outperforms the Diffusion Transformer (DiT) in multiple dimensions including image quality, inference speed, data efficiency, and scalability. Scaling up VAR models exhibits clear power-law scaling laws similar to those observed in LLMs, with linear correlation coefficients near -0.998 as solid evidence. VAR further showcases zero-shot generalization ability in downstream tasks including image in-painting, out-painting, and editing. These results suggest VAR has initially emulated the two important properties of LLMs: Scaling Laws and zero-shot task generalization. We have released all models and codes to promote the exploration of AR/VAR models for visual generation and unified learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
木子发布了新的文献求助10
4秒前
6秒前
YEM完成签到,获得积分10
7秒前
8秒前
capricorn完成签到,获得积分10
9秒前
9秒前
柯一一应助清梦采纳,获得10
11秒前
11秒前
黄智清发布了新的文献求助30
11秒前
科研通AI5应助Dou_Xiaowen采纳,获得10
12秒前
14秒前
搜集达人应助RAIN采纳,获得10
14秒前
14秒前
YamDaamCaa应助keira采纳,获得30
16秒前
lppp发布了新的文献求助10
16秒前
string发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
踢球的孩子完成签到 ,获得积分10
19秒前
arabidopsis应助zj采纳,获得10
19秒前
19秒前
Bressanone发布了新的文献求助10
19秒前
20秒前
所所应助俊逸的刺猬采纳,获得10
21秒前
orixero应助dayu采纳,获得10
21秒前
恶恶么v发布了新的文献求助10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
23秒前
Qiao应助科研通管家采纳,获得10
23秒前
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
七月流火应助科研通管家采纳,获得50
23秒前
柯一一应助科研通管家采纳,获得10
23秒前
柯一一应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432