自回归模型
比例(比率)
计算机科学
可扩展性
图像(数学)
星型
人工智能
计量经济学
自回归积分移动平均
机器学习
数学
时间序列
地图学
地理
操作系统
作者
Keyu Tian,Yi Jiang,Zehuan Yuan,Bingyue Peng,Liwei Wang
出处
期刊:Cornell University - arXiv
日期:2024-04-03
标识
DOI:10.48550/arxiv.2404.02905
摘要
We present Visual AutoRegressive modeling (VAR), a new generation paradigm that redefines the autoregressive learning on images as coarse-to-fine "next-scale prediction" or "next-resolution prediction", diverging from the standard raster-scan "next-token prediction". This simple, intuitive methodology allows autoregressive (AR) transformers to learn visual distributions fast and generalize well: VAR, for the first time, makes AR models surpass diffusion transformers in image generation. On ImageNet 256x256 benchmark, VAR significantly improve AR baseline by improving Frechet inception distance (FID) from 18.65 to 1.80, inception score (IS) from 80.4 to 356.4, with around 20x faster inference speed. It is also empirically verified that VAR outperforms the Diffusion Transformer (DiT) in multiple dimensions including image quality, inference speed, data efficiency, and scalability. Scaling up VAR models exhibits clear power-law scaling laws similar to those observed in LLMs, with linear correlation coefficients near -0.998 as solid evidence. VAR further showcases zero-shot generalization ability in downstream tasks including image in-painting, out-painting, and editing. These results suggest VAR has initially emulated the two important properties of LLMs: Scaling Laws and zero-shot task generalization. We have released all models and codes to promote the exploration of AR/VAR models for visual generation and unified learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI