Abstract 1068: Plasma metabolite biomarkers for EGFR-mutated non-small cell lung cancer (NSCLC)

代谢物 肺癌 癌症研究 医学 癌症 肿瘤科 内科学
作者
Lucksamon Thamlikitkul,Siriphan Manocheewa,Suphitcha Limjiasahapong,Kwanjeera Wanichthanarak,Atikorn Panya,Naravat Poungvarin,Yotsawat Pomyen,Sakda Khoomrung
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 1068-1068
标识
DOI:10.1158/1538-7445.am2024-1068
摘要

Abstract Background: Lung cancer is the leading cause of cancer death. More than half of the patients are diagnosed in the advanced stage for which the 5-year survival is below 10%. Lung cancer screening using low-dose CT scan reduced lung cancer mortality among heavy smokers. However, no standard screening method exists for non-smokers. Up to 35% and 90% of male and female lung cancer patients in Southeast Asia, respectively, do not smoke. Half of NSCLC patients in this region harbor EGFR mutations, which is common in women and non-smokers. Thus, we sought to explore novel biomarkers that help to identify lung cancer patients and those who have EGFR mutation. Metabolic reprogramming is one of the hallmarks of cancer. It leads to changes in metabolite levels in the blood. Hence, we conducted plasma metabolomic analysis to identify potential metabolite biomarkers in lung cancer patients. Methods: Plasma samples were collected from 69 lung cancer patients at Siriraj hospital and 10 healthy individuals during 2018-2022. Plasma metabolites from 29 treatment-naïve EGFR-mutated NSCLC patients, 30 treatment-naïve EGFR-wild-type NSCLC patients, 10 treatment-resistant EGFR T790M-mutated NSCLC patients, and 10 healthy individuals were profiled using GC-MS and untargeted LC-MS with Metlin database matching. EGFR mutation was detected from plasma ctDNA using real-time PCR. Negative plasma EGFR mutation results were confirmed with corresponding tumor tissues. Metabolomics data were processed by the metabox R package. Results: Among 114 candidate metabolites that passed the variable importance in projection (VIP) cutoff of 1.5, the top ten metabolites that differentiate NSCLC patients with EGFR mutation from those without were shown in Table 1. Many of them can also separate between NSCLC patients and healthy individuals. Table 1. ROC curve analysis Discriminant metabolites (Mutated EGFR vs Wild-type EGFR NSCLC) AUC Accuracy Sensitivity Specificity PG(a-13:0/i-12:0) 0.8000 0.7833 0.8333 0.7333 Nervonic ceramide 0.7736 0.6772 0.7259 0.6333 Valine 0.7678 0.7298 0.7259 0.7333 L-Histidinol 0.7644 0.7281 0.7222 0.7333 Leucine 0.7563 0.7632 0.7259 0.8000 Tryptophan 0.7425 0.6289 0.5593 0.7000 8-methylcaffeine 0.6793 0.6096 0.6222 0.6000 Formic acid 0.6759 0.6447 0.5889 0.7000 PC(20:0/24:0) 0.6506 0.6614 0.8259 0.5000 Sucrose 0.6471 0.6596 0.7593 0.5667 Discriminant metabolites (NSCLC patients vs Healthy individuals) AUC Accuracy Sensitivity Specificity Tryptophan 0.9986 0.9867 1.0000 0.9848 PC(20:0/24:0) 0.8609 0.9505 0.6111 1.0000 L-Histidinol 0.8572 0.9625 0.7778 0.9861 Formic acid 0.6696 0.9262 0.6667 0.9704 Conclusions: Plasma L-Histidinol, tryptophan, PC(20:0/24:0), and formic acid are potential metabolite biomarkers for NSCLC patients harboring EGFR mutation. Citation Format: Lucksamon Thamlikitkul, Siriphan Manocheewa, Suphitcha Limjiasahapong, Kwanjeera Wanichthanarak, Atikorn Panya, Naravat Poungvarin, Yotsawat Pomyen, Sakda Khoomrung. Plasma metabolite biomarkers for EGFR-mutated non-small cell lung cancer (NSCLC) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 1068.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
整齐听南完成签到 ,获得积分10
刚刚
lt完成签到,获得积分10
刚刚
shishi0718完成签到,获得积分10
刚刚
周先森完成签到,获得积分10
1秒前
1秒前
小可爱完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
大树应助一点就通采纳,获得10
1秒前
wtfff发布了新的文献求助10
1秒前
科研通AI6应助Ayn采纳,获得10
1秒前
Dr.zhong完成签到,获得积分10
1秒前
杨乐多完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
QWE发布了新的文献求助10
4秒前
Hao完成签到,获得积分10
4秒前
学术小白菜完成签到,获得积分20
4秒前
4秒前
5秒前
萌萌哒瓢酱完成签到,获得积分10
5秒前
小白完成签到 ,获得积分10
6秒前
赘婿应助白菜也挺贵采纳,获得10
6秒前
cherry发布了新的文献求助10
6秒前
田di完成签到 ,获得积分10
6秒前
团子呀发布了新的文献求助10
7秒前
晃悠悠的可乐完成签到 ,获得积分10
8秒前
8秒前
陶醉幻丝发布了新的文献求助10
8秒前
道枢完成签到,获得积分10
9秒前
席冥完成签到,获得积分10
9秒前
Live应助我嘞个豆采纳,获得30
9秒前
系统提示发布了新的文献求助10
10秒前
科研通AI6应助wangxiu采纳,获得10
10秒前
三只羊驼发布了新的文献求助10
10秒前
gxh发布了新的文献求助10
11秒前
百千山岳发布了新的文献求助10
12秒前
子晏完成签到 ,获得积分10
12秒前
Alexendrial_kai完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273