亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems

替代模型 计算机科学 数学优化 算法 数学 机器学习
作者
Liang Hu,Xianwei Wu,Xilong Che
出处
期刊:Information Technology and Control [Kaunas University of Technology]
卷期号:53 (1): 280-301
标识
DOI:10.5755/j01.itc.53.1.35922
摘要

With the development of computer science, more and more complex problems rely on the help of computers for solving. When facing the parameter optimization problem of complex models, traditional intelligent optimization algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By constructing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance weighting (IDW) are constructed for global and local level surrogate model respectively. These methods leverage their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM's simulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青柚完成签到 ,获得积分10
1秒前
星辰大海应助xiaoxiao采纳,获得10
10秒前
23秒前
24秒前
阿巴阿巴发布了新的文献求助30
31秒前
子平完成签到 ,获得积分0
42秒前
灵剑山完成签到 ,获得积分10
47秒前
yf完成签到,获得积分10
47秒前
Criminology34应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
千早爱音应助科研通管家采纳,获得20
1分钟前
思源应助研友_8RyzBZ采纳,获得10
1分钟前
1分钟前
Zefinity完成签到,获得积分10
1分钟前
1分钟前
1分钟前
研友_8RyzBZ发布了新的文献求助10
1分钟前
研友_8RyzBZ完成签到,获得积分20
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
阿巴阿巴完成签到,获得积分10
1分钟前
1分钟前
外向的涛完成签到,获得积分10
2分钟前
2分钟前
张六六完成签到 ,获得积分10
2分钟前
千早爱音应助科研通管家采纳,获得20
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
3分钟前
漫步随心发布了新的文献求助10
3分钟前
3分钟前
waomi完成签到 ,获得积分10
3分钟前
www驳回了今后应助
3分钟前
3分钟前
Runjin_Hu发布了新的文献求助10
3分钟前
guan发布了新的文献求助10
3分钟前
漫步随心完成签到,获得积分20
3分钟前
852应助默默善愁采纳,获得10
3分钟前
Kinkrit完成签到 ,获得积分10
4分钟前
guan完成签到,获得积分10
4分钟前
朴实的映秋完成签到,获得积分10
4分钟前
dddd完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770