A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems

替代模型 计算机科学 数学优化 算法 数学 机器学习
作者
Liang Hu,Xianwei Wu,Xilong Che
出处
期刊:Information Technology and Control [Kaunas University of Technology]
卷期号:53 (1): 280-301
标识
DOI:10.5755/j01.itc.53.1.35922
摘要

With the development of computer science, more and more complex problems rely on the help of computers for solving. When facing the parameter optimization problem of complex models, traditional intelligent optimization algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By constructing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance weighting (IDW) are constructed for global and local level surrogate model respectively. These methods leverage their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM's simulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wenyilong完成签到,获得积分10
1秒前
朴素的向雁关注了科研通微信公众号
1秒前
Ava应助小巧的灵竹采纳,获得10
2秒前
森森完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
bkagyin应助ying采纳,获得10
3秒前
jiangming完成签到,获得积分10
4秒前
Ava应助月饼同学采纳,获得10
4秒前
guohh发布了新的文献求助10
4秒前
wmq发布了新的文献求助10
5秒前
朱成发布了新的文献求助10
6秒前
研友_VZG7GZ应助兰兰睡着了采纳,获得10
6秒前
7秒前
7秒前
动听汉堡完成签到,获得积分10
7秒前
Wenyilong发布了新的文献求助10
8秒前
涛哥发布了新的文献求助10
8秒前
8秒前
10秒前
lll完成签到 ,获得积分10
10秒前
Yinglan发布了新的文献求助20
10秒前
Limengyao发布了新的文献求助10
10秒前
月饼同学完成签到,获得积分10
11秒前
yixuan发布了新的文献求助10
11秒前
12秒前
情怀应助小泉采纳,获得10
13秒前
铁甲小杨完成签到,获得积分10
13秒前
14秒前
14秒前
guyue完成签到,获得积分20
14秒前
14秒前
liss完成签到,获得积分10
15秒前
铁甲小杨发布了新的文献求助20
17秒前
FashionBoy应助清爽难敌采纳,获得10
18秒前
18秒前
Binbin完成签到 ,获得积分10
18秒前
赫连涵柏发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945