A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems

替代模型 计算机科学 数学优化 算法 数学 机器学习
作者
Liang Hu,Xianwei Wu,Xilong Che
出处
期刊:Information Technology and Control [Kaunas University of Technology]
卷期号:53 (1): 280-301
标识
DOI:10.5755/j01.itc.53.1.35922
摘要

With the development of computer science, more and more complex problems rely on the help of computers for solving. When facing the parameter optimization problem of complex models, traditional intelligent optimization algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By constructing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance weighting (IDW) are constructed for global and local level surrogate model respectively. These methods leverage their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM's simulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betyby完成签到 ,获得积分10
刚刚
科研通AI6应助jyyg采纳,获得10
2秒前
2秒前
科研通AI6应助于小文采纳,获得10
2秒前
潮湿梦发布了新的文献求助10
2秒前
爆米花应助5mg采纳,获得10
2秒前
357发布了新的文献求助30
2秒前
紫瓜发布了新的文献求助10
2秒前
科研通AI6应助宇文向雪采纳,获得10
2秒前
小浣熊完成签到,获得积分10
3秒前
苏苏苏关注了科研通微信公众号
3秒前
LZ的脑子完成签到,获得积分10
4秒前
上官若男应助鲸鱼采纳,获得10
6秒前
思源应助momucy采纳,获得10
6秒前
7秒前
卜应完成签到,获得积分10
7秒前
白菜也挺贵完成签到,获得积分20
7秒前
8秒前
fqx完成签到,获得积分20
8秒前
8秒前
xiaohe完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
科目三应助宁人采纳,获得10
11秒前
fpy完成签到,获得积分10
11秒前
11秒前
孟筱发布了新的文献求助10
12秒前
一天完成签到,获得积分10
12秒前
刘亦菲完成签到 ,获得积分10
12秒前
Lynn完成签到,获得积分10
13秒前
浮游应助momucy采纳,获得10
13秒前
zj完成签到,获得积分10
13秒前
潮湿梦完成签到,获得积分10
13秒前
13秒前
经纲完成签到 ,获得积分0
14秒前
陈俊瑶完成签到,获得积分10
14秒前
上官若男应助哲别采纳,获得10
15秒前
24豆完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513