A Multi-level Surrogate-assisted Algorithm for Expensive Optimization Problems

替代模型 计算机科学 数学优化 算法 数学 机器学习
作者
Liang Hu,Xianwei Wu,Xilong Che
出处
期刊:Information Technology and Control [Kaunas University of Technology (KTU)]
卷期号:53 (1): 280-301
标识
DOI:10.5755/j01.itc.53.1.35922
摘要

With the development of computer science, more and more complex problems rely on the help of computers for solving. When facing the parameter optimization problem of complex models, traditional intelligent optimization algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By constructing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance weighting (IDW) are constructed for global and local level surrogate model respectively. These methods leverage their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM's simulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小暴发布了新的文献求助10
2秒前
暮晓见完成签到 ,获得积分10
2秒前
chang发布了新的文献求助10
3秒前
香蕉觅云应助东郭一斩采纳,获得10
4秒前
jopaul完成签到,获得积分10
5秒前
6秒前
塵埃完成签到,获得积分10
6秒前
早早完成签到,获得积分10
7秒前
10秒前
qq应助张钰婷啦啦啦采纳,获得10
11秒前
14秒前
Nicole应助chang采纳,获得10
14秒前
14秒前
huaming完成签到,获得积分10
15秒前
可爱的函函应助大橙子采纳,获得200
16秒前
东郭一斩发布了新的文献求助10
16秒前
小暴完成签到,获得积分10
16秒前
史蒂芬张发布了新的文献求助10
17秒前
17秒前
18秒前
poile完成签到,获得积分10
18秒前
19秒前
XiangW发布了新的文献求助10
19秒前
bvh完成签到,获得积分20
22秒前
不打烊发布了新的文献求助50
23秒前
黄林旋发布了新的文献求助10
23秒前
暮晓见发布了新的文献求助10
23秒前
KK完成签到,获得积分10
23秒前
偶然847完成签到,获得积分10
23秒前
Mm发布了新的文献求助50
24秒前
Yanxb完成签到,获得积分10
25秒前
26秒前
酷波er应助阳光萝采纳,获得10
27秒前
万能图书馆应助开心绿柳采纳,获得10
29秒前
史蒂芬张完成签到,获得积分10
29秒前
NexusExplorer应助黄林旋采纳,获得10
29秒前
东郭一斩完成签到,获得积分10
31秒前
wangzai111完成签到,获得积分10
31秒前
32秒前
彭于晏应助xyx采纳,获得150
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3118624
求助须知:如何正确求助?哪些是违规求助? 2768826
关于积分的说明 7698490
捐赠科研通 2424235
什么是DOI,文献DOI怎么找? 1287711
科研通“疑难数据库(出版商)”最低求助积分说明 620554
版权声明 599950