mNFE: microbiome network flow entropy for detecting pre-disease states of type 1 diabetes

微生物群 生物 1型糖尿病 计算生物学 疾病 肠道菌群 生物信息学 糖尿病 免疫学 医学 内科学 内分泌学
作者
Rong Gao,Peiluan Li,Yueqiong Ni,Xueqing Peng,Jing Wang,Luonan Chen
出处
期刊:Gut microbes [Informa]
卷期号:16 (1)
标识
DOI:10.1080/19490976.2024.2327349
摘要

In the development of Type 1 diabetes (T1D), there are critical states just before drastic changes, and identifying these pre-disease states may predict T1D or provide crucial early-warning signals. Unlike gene expression data, gut microbiome data can be collected noninvasively from stool samples. Gut microbiome sequencing data contain different levels of phylogenetic information that can be utilized to detect the tipping point or critical state in a reliable manner, thereby providing accurate and effective early-warning signals. However, it is still difficult to detect the critical state of T1D based on gut microbiome data due to generally non-significant differences between healthy and critical states. To address this problem, we proposed a new method - microbiome network flow entropy (mNFE) based on a single sample from each individual - for detecting the critical state before seroconversion and abrupt transitions of T1D at various taxonomic levels. The numerical simulation validated the robustness of mNFE under different noise levels. Furthermore, based on real datasets, mNFE successfully identified the critical states and their dynamic network biomarkers (DNBs) at different taxonomic levels. In addition, we found some high-frequency species, which are closely related to the unique clinical characteristics of autoantibodies at the four levels, and identified some non-differential 'dark species' play important roles during the T1D progression. mNFE can robustly and effectively detect the pre-disease states at various taxonomic levels and identify the corresponding DNBs with only a single sample for each individual. Therefore, our mNFE method provides a new approach not only for T1D pre-disease diagnosis or preventative treatment but also for preventative medicine of other diseases by gut microbiome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
快乐小白菜应助shenzhou9采纳,获得10
1秒前
无花果应助aertom采纳,获得10
1秒前
小田发布了新的文献求助10
1秒前
sankumao发布了新的文献求助30
1秒前
奋斗的盼柳完成签到 ,获得积分10
2秒前
3秒前
Jasper应助handsomecat采纳,获得10
3秒前
3秒前
李雪完成签到,获得积分10
4秒前
4秒前
sv发布了新的文献求助10
6秒前
小田完成签到,获得积分10
6秒前
茶茶完成签到,获得积分20
6秒前
苏兴龙完成签到,获得积分10
6秒前
坚强的亦云-333完成签到,获得积分10
6秒前
Ava应助dan1029采纳,获得10
7秒前
7秒前
7秒前
奶糖最可爱完成签到,获得积分10
8秒前
8秒前
mojomars发布了新的文献求助10
9秒前
幽壑之潜蛟应助茶茶采纳,获得10
9秒前
10秒前
10秒前
10秒前
迅速海云完成签到,获得积分10
10秒前
sjxx发布了新的文献求助10
10秒前
10秒前
乐乐应助Rachel采纳,获得10
11秒前
11秒前
11秒前
天天快乐应助孤独的珩采纳,获得10
12秒前
帅气鹭洋发布了新的文献求助20
12秒前
13秒前
孙悦发布了新的文献求助10
13秒前
知性的绮兰完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794