Privacy-preserving Cross-domain Recommendation with Federated Graph Learning

计算机科学 图形 领域(数学分析) 情报检索 推荐系统 万维网 理论计算机科学 数学分析 数学
作者
Changxin Tian,Yuexiang Xie,Xu Chen,Yaliang Li,Wayne Xin Zhao
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (5): 1-29 被引量:5
标识
DOI:10.1145/3653448
摘要

As people inevitably interact with items across multiple domains or various platforms, cross-domain recommendation (CDR) has gained increasing attention. However, the rising privacy concerns limit the practical applications of existing CDR models, since they assume that full or partial data are accessible among different domains. Recent studies on privacy-aware CDR models neglect the heterogeneity from multiple-domain data and fail to achieve consistent improvements in cross-domain recommendation; thus, it remains a challenging task to conduct effective CDR in a privacy-preserving way. In this article, we propose a novel, as far as we know, federated graph learning approach for Privacy-Preserving Cross-Domain Recommendation (PPCDR) to capture users’ preferences based on distributed multi-domain data and improve recommendation performance for all domains without privacy leakage. The main idea of PPCDR is to model both global preference among multiple domains and local preference at a specific domain for a given user, which characterizes the user’s shared and domain-specific tastes toward the items for interaction. Specifically, in the private update process of PPCDR, we design a graph transfer module for each domain to fuse global and local user preferences and update them based on local domain data. In the federated update process, through applying the local differential privacy technique for privacy-preserving, we collaboratively learn global user preferences based on multi-domain data and adapt these global preferences to heterogeneous domain data via personalized aggregation. In this way, PPCDR can effectively approximate the multi-domain training process that directly shares local interaction data in a privacy-preserving way. Extensive experiments on three CDR datasets demonstrate that PPCDR consistently outperforms competitive single- and cross-domain baselines and effectively protects domain privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸熠晖关注了科研通微信公众号
1秒前
秀丽莛完成签到,获得积分10
1秒前
沉默诗兰完成签到,获得积分10
1秒前
lmq完成签到,获得积分10
2秒前
SYLH应助dreamlife采纳,获得30
2秒前
2秒前
怕黑的静蕾应助Wuc采纳,获得10
2秒前
3秒前
3秒前
zy0411发布了新的文献求助10
3秒前
6秒前
清爽乐菱应助plain采纳,获得10
7秒前
7秒前
学术小白完成签到,获得积分10
7秒前
7秒前
李爱国应助悦耳凝丹采纳,获得10
8秒前
sum发布了新的文献求助10
9秒前
风铃鸟发布了新的文献求助30
9秒前
学术小白发布了新的文献求助10
10秒前
所所应助嘿嘿嘿采纳,获得10
10秒前
11秒前
lJH完成签到,获得积分10
11秒前
junxi完成签到,获得积分10
11秒前
Chambray发布了新的文献求助10
11秒前
茶包完成签到,获得积分10
12秒前
疯狂的虔完成签到,获得积分10
12秒前
zzy发布了新的文献求助10
12秒前
双景完成签到,获得积分10
12秒前
珂珂发布了新的文献求助10
12秒前
13秒前
等待毛豆完成签到,获得积分10
13秒前
疯狂的虔发布了新的文献求助10
15秒前
leftarrow完成签到,获得积分10
16秒前
莫弃发布了新的文献求助10
17秒前
17秒前
怕黑的静蕾应助pwq采纳,获得10
18秒前
19秒前
绵绵冰完成签到 ,获得积分10
20秒前
20秒前
aaaaaa发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421