Privacy-Preserving Cross-Domain Recommendation with Federated Graph Learning

计算机科学 图形 领域(数学分析) 情报检索 推荐系统 万维网 理论计算机科学 数学分析 数学
作者
Changxin Tian,Yuexiang Xie,Chen Xu,Yaliang Li,Wayne Xin Zhao
出处
期刊:ACM Transactions on Information Systems
标识
DOI:10.1145/3653448
摘要

As people inevitably interact with items across multiple domains or various platforms, cross-domain recommendation (CDR) has gained increasing attention. However, the rising privacy concerns limit the practical applications of existing CDR models since they assume that full or partial data are accessible among different domains. Recent studies on privacy-aware CDR models neglect the heterogeneity from multiple domain data and fail to achieve consistent improvements in cross-domain recommendation; thus, it remains a challenging task to conduct effective CDR in a privacy-preserving way. In this paper, we propose a novel federated graph learning approach for P rivacy- P reserving C ross- D omain R ecommendation (denoted as PPCDR ) to capture users’ preferences based on distributed multi-domain data and improve recommendation performance for all domains without privacy leakage. The main idea of PPCDR is to model both global preference among multiple domains and local preference at a specific domain for a given user, which characterizes the user’s shared and domain-specific tastes towards the items for interaction. Specifically, in the private update process of PPCDR, we design a graph transfer module for each domain to fuse global and local user preferences and update them based on local domain data. In the federated update process, through applying the local differential privacy (LDP) technique for privacy-preserving, we collaboratively learn global user preferences based on multi-domain data, and adapt these global preferences to heterogeneous domain data via personalized aggregation. In this way, PPCDR can effectively approximate the multi-domain training process that directly shares local interaction data in a privacy-preserving way. Extensive experiments on three CDR datasets demonstrate that PPCDR consistently outperforms competitive single- and cross-domain baselines and effectively protects domain privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
谷大壮完成签到 ,获得积分10
2秒前
ding应助白凉鞋采纳,获得10
4秒前
吾儿坤发布了新的文献求助10
4秒前
stephen_wang完成签到,获得积分10
5秒前
风中亦玉发布了新的文献求助10
5秒前
6秒前
ding应助飘逸的青雪采纳,获得10
6秒前
万能图书馆应助韦世豪采纳,获得10
7秒前
babyxie发布了新的文献求助10
7秒前
8秒前
科研岗发布了新的文献求助10
8秒前
无花果应助waoller1采纳,获得10
8秒前
可爱的函函应助白金之星采纳,获得10
9秒前
9秒前
9秒前
seven发布了新的文献求助10
10秒前
lan完成签到 ,获得积分10
10秒前
ajun发布了新的文献求助10
10秒前
新来的家伙完成签到 ,获得积分10
11秒前
吾儿坤完成签到,获得积分10
11秒前
华仔应助π1采纳,获得10
11秒前
11秒前
tunerling完成签到,获得积分10
11秒前
12秒前
13664424767完成签到,获得积分10
12秒前
JamesPei应助璀璨的饺子采纳,获得10
13秒前
David关注了科研通微信公众号
13秒前
nanyus发布了新的文献求助10
13秒前
15秒前
酷波er应助waoller1采纳,获得10
15秒前
zhujun完成签到,获得积分10
15秒前
福福完成签到 ,获得积分10
15秒前
搁浅完成签到 ,获得积分10
15秒前
阿飞飞飞发布了新的文献求助50
16秒前
劲秉应助微笑书双采纳,获得10
19秒前
20秒前
20秒前
corner发布了新的文献求助10
20秒前
感动的三毒完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460817
求助须知:如何正确求助?哪些是违规求助? 3054771
关于积分的说明 9044518
捐赠科研通 2744512
什么是DOI,文献DOI怎么找? 1505599
科研通“疑难数据库(出版商)”最低求助积分说明 695745
邀请新用户注册赠送积分活动 695092