A review of remote sensing image segmentation by deep learning methods

人工智能 分割 地理 深度学习 计算机科学 图像分割 图像(数学) 遥感 地图学 计算机视觉 模式识别(心理学)
作者
Jiangyun Li,Yuanxiu Cai,Qing Li,Mingyin Kou,Tianxiang Zhang
出处
期刊:International Journal of Digital Earth [Informa]
卷期号:17 (1) 被引量:5
标识
DOI:10.1080/17538947.2024.2328827
摘要

Remote sensing (RS) images enable high-resolution information collection from complex ground objects and are increasingly utilized in the earth observation research. Recently, RS technologies are continuously enhanced by various characterized platforms and sensors. Simultaneously, artificial intelligence vision algorithms are also developing vigorously and playing a significant role in RS image analysis. In particular, aiming to divide images into different ground elements with specific semantic labels, RS image segmentation could realize the visual acquisition and interpretation. As one of the pioneering methods with the advantages of deep feature extraction ability, deep learning (DL) algorithms have been exploited and proved to be highly beneficial for precise segmentation in recent years. In this paper, a comprehensive review is performed on remote sensing survey systems and various kinds of specially designed deep learning architectures. Meanwhile, DL-based segmentation methods applied on four domains are also illustrated, including geography, precision agriculture, hydrology, and environmental protection issues. In the end, the existing challenges and promising research directions in RS image segmentation are discussed. It is envisioned that this review is able to provide a comprehensive and technical reference, deployment and successful exploitation of DL empowered RS image segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的嚓茶完成签到,获得积分10
2秒前
CodeCraft应助wangshui采纳,获得30
5秒前
海苔肉松卷完成签到,获得积分10
8秒前
FGG完成签到,获得积分10
10秒前
zzz完成签到 ,获得积分10
12秒前
謃河鷺起完成签到,获得积分10
12秒前
15秒前
16秒前
深情安青应助威武荆采纳,获得10
16秒前
Wang完成签到,获得积分10
16秒前
情怀应助兔兔不睡觉采纳,获得10
17秒前
王博士完成签到,获得积分10
18秒前
Wang发布了新的文献求助10
19秒前
重要的耳机完成签到,获得积分10
19秒前
24秒前
24秒前
ghost4551完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
调研昵称发布了新的文献求助10
31秒前
肉肉完成签到 ,获得积分10
31秒前
31秒前
grammays发布了新的文献求助10
32秒前
鹿飞完成签到,获得积分10
32秒前
周舟发布了新的文献求助30
32秒前
34秒前
38秒前
39秒前
41秒前
JamesPei应助科研通管家采纳,获得10
41秒前
852应助grammays采纳,获得10
41秒前
Lucas应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得10
41秒前
大模型应助科研通管家采纳,获得10
42秒前
英姑应助科研通管家采纳,获得10
42秒前
大个应助科研通管家采纳,获得10
42秒前
Owen应助科研通管家采纳,获得10
42秒前
顾矜应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352562
求助须知:如何正确求助?哪些是违规求助? 2977604
关于积分的说明 8680602
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709