PFD-Net: Pyramid Fourier Deformable Network for medical image segmentation

计算机科学 分割 棱锥(几何) 人工智能 编码器 块(置换群论) 残余物 计算机视觉 特征(语言学) 卷积(计算机科学) 图像分割 模式识别(心理学) 人工神经网络 算法 几何学 数学 语言学 哲学 操作系统
作者
Chaorong Yang,Zhaohui Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108302-108302 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108302
摘要

Medical image segmentation is crucial for accurately locating lesion regions and assisting doctors in diagnosis. However, most existing methods fail to effectively utilize both local details and global semantic information in medical image segmentation, resulting in the inability to effectively capture fine-grained content such as small targets and irregular boundaries. To address this issue, we propose a novel Pyramid Fourier Deformable Network (PFD-Net) for medical image segmentation, which leverages the strengths of CNN and Transformer. The PFD-Net first utilizes PVTv2-based Transformer as the primary encoder to capture global information and further enhances both local and global feature representations with the Fast Fourier Convolution Residual (FFCR) module. Moreover, PFD-Net further proposes the Dilated Deformable Refinement (DDR) module to enhance the model's capacity to comprehend global semantic structures of shape-diverse targets and their irregular boundaries. Lastly, Cross-Level Fusion Block with deformable convolution (CLFB) is proposed to combine the decoded feature maps from the final Residual Decoder Block (DDR) with local features from the CNN auxiliary encoder branch, improving the network's ability to perceive targets resembling the surrounding structures. Extensive experiments were conducted on nine publicly medical image datasets for five types of segmentation tasks including polyp, abdominal, cardiac, gland cells and nuclei. The qualitative and quantitative results demonstrate that PFD-Net outperforms existing state-of-the-art methods in various evaluation metrics, and achieves the highest performance of mDice with the value of 0.826 on the most challenging dataset (ETIS), which is 1.8% improvement compared to the previous best-performing HSNet and 3.6% improvement compared to the next-best PVT-CASCADE. Codes are available at https://github.com/ChaorongYang/PFD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳能之子完成签到,获得积分10
1秒前
易安发布了新的文献求助10
1秒前
1秒前
1秒前
留胡子的藏鸟完成签到,获得积分10
2秒前
赘婿应助Jemry采纳,获得10
3秒前
stars完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
7秒前
7秒前
研友_rLmNXn发布了新的文献求助10
9秒前
9秒前
赘婿应助神勇的梦凡采纳,获得10
9秒前
CodeCraft应助聪明紫山采纳,获得10
10秒前
qcf发布了新的文献求助10
11秒前
SYLH应助xinxin采纳,获得20
11秒前
1111发布了新的文献求助10
11秒前
11秒前
iieao完成签到,获得积分20
11秒前
烨坤完成签到 ,获得积分10
11秒前
子璇发布了新的文献求助10
12秒前
霸气大米完成签到,获得积分10
12秒前
早睡早起完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
共享精神应助研友_rLmNXn采纳,获得10
16秒前
搞怪世德应助研友_rLmNXn采纳,获得10
16秒前
16秒前
李健应助研友_rLmNXn采纳,获得10
16秒前
搜集达人应助超级盼海采纳,获得10
16秒前
SYLH应助沉静的安青采纳,获得10
17秒前
18秒前
呆瓜完成签到,获得积分10
18秒前
19秒前
Owen应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214