PFD-Net: Pyramid Fourier Deformable Network for medical image segmentation

计算机科学 分割 棱锥(几何) 人工智能 编码器 块(置换群论) 残余物 计算机视觉 特征(语言学) 卷积(计算机科学) 图像分割 模式识别(心理学) 人工神经网络 算法 几何学 数学 语言学 哲学 操作系统
作者
Chaorong Yang,Zhaohui Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108302-108302 被引量:22
标识
DOI:10.1016/j.compbiomed.2024.108302
摘要

Medical image segmentation is crucial for accurately locating lesion regions and assisting doctors in diagnosis. However, most existing methods fail to effectively utilize both local details and global semantic information in medical image segmentation, resulting in the inability to effectively capture fine-grained content such as small targets and irregular boundaries. To address this issue, we propose a novel Pyramid Fourier Deformable Network (PFD-Net) for medical image segmentation, which leverages the strengths of CNN and Transformer. The PFD-Net first utilizes PVTv2-based Transformer as the primary encoder to capture global information and further enhances both local and global feature representations with the Fast Fourier Convolution Residual (FFCR) module. Moreover, PFD-Net further proposes the Dilated Deformable Refinement (DDR) module to enhance the model's capacity to comprehend global semantic structures of shape-diverse targets and their irregular boundaries. Lastly, Cross-Level Fusion Block with deformable convolution (CLFB) is proposed to combine the decoded feature maps from the final Residual Decoder Block (DDR) with local features from the CNN auxiliary encoder branch, improving the network's ability to perceive targets resembling the surrounding structures. Extensive experiments were conducted on nine publicly medical image datasets for five types of segmentation tasks including polyp, abdominal, cardiac, gland cells and nuclei. The qualitative and quantitative results demonstrate that PFD-Net outperforms existing state-of-the-art methods in various evaluation metrics, and achieves the highest performance of mDice with the value of 0.826 on the most challenging dataset (ETIS), which is 1.8% improvement compared to the previous best-performing HSNet and 3.6% improvement compared to the next-best PVT-CASCADE. Codes are available at https://github.com/ChaorongYang/PFD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美少叔叔完成签到 ,获得积分10
刚刚
1秒前
yw完成签到 ,获得积分10
1秒前
1秒前
jzs完成签到 ,获得积分10
1秒前
cxy完成签到,获得积分10
3秒前
cc完成签到,获得积分10
3秒前
巴达天使完成签到,获得积分10
4秒前
潇洒台灯完成签到,获得积分10
4秒前
Owen应助加油少年采纳,获得10
5秒前
蘑菇完成签到,获得积分10
6秒前
郝郝完成签到,获得积分10
6秒前
QQ完成签到,获得积分10
7秒前
糟糕的翅膀完成签到,获得积分10
7秒前
JJJ发布了新的文献求助30
7秒前
qiangxu完成签到,获得积分10
8秒前
8秒前
Cat4pig完成签到 ,获得积分10
8秒前
HH完成签到 ,获得积分10
9秒前
爆米花应助顺心的水云采纳,获得10
9秒前
叶子完成签到,获得积分10
10秒前
10秒前
星之完成签到,获得积分10
10秒前
诚心熊猫完成签到,获得积分10
12秒前
就是一种水稻的完成签到,获得积分10
13秒前
14秒前
YY完成签到 ,获得积分10
14秒前
yy完成签到 ,获得积分10
15秒前
15秒前
aaaa完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
小高的茯苓糕完成签到,获得积分10
16秒前
Leo完成签到,获得积分10
16秒前
大模型应助JJJ采纳,获得30
16秒前
搜集达人应助甲壳虫采纳,获得10
17秒前
abandon0000完成签到,获得积分20
18秒前
啊啊啊啊发布了新的文献求助10
18秒前
康轲完成签到,获得积分10
18秒前
栗悟饭与龟波功完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131