PFD-Net: Pyramid Fourier Deformable Network for medical image segmentation

计算机科学 分割 棱锥(几何) 人工智能 编码器 块(置换群论) 残余物 计算机视觉 特征(语言学) 卷积(计算机科学) 图像分割 模式识别(心理学) 人工神经网络 算法 哲学 操作系统 语言学 数学 几何学
作者
Chaorong Yang,Zhaohui Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108302-108302 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108302
摘要

Medical image segmentation is crucial for accurately locating lesion regions and assisting doctors in diagnosis. However, most existing methods fail to effectively utilize both local details and global semantic information in medical image segmentation, resulting in the inability to effectively capture fine-grained content such as small targets and irregular boundaries. To address this issue, we propose a novel Pyramid Fourier Deformable Network (PFD-Net) for medical image segmentation, which leverages the strengths of CNN and Transformer. The PFD-Net first utilizes PVTv2-based Transformer as the primary encoder to capture global information and further enhances both local and global feature representations with the Fast Fourier Convolution Residual (FFCR) module. Moreover, PFD-Net further proposes the Dilated Deformable Refinement (DDR) module to enhance the model's capacity to comprehend global semantic structures of shape-diverse targets and their irregular boundaries. Lastly, Cross-Level Fusion Block with deformable convolution (CLFB) is proposed to combine the decoded feature maps from the final Residual Decoder Block (DDR) with local features from the CNN auxiliary encoder branch, improving the network's ability to perceive targets resembling the surrounding structures. Extensive experiments were conducted on nine publicly medical image datasets for five types of segmentation tasks including polyp, abdominal, cardiac, gland cells and nuclei. The qualitative and quantitative results demonstrate that PFD-Net outperforms existing state-of-the-art methods in various evaluation metrics, and achieves the highest performance of mDice with the value of 0.826 on the most challenging dataset (ETIS), which is 1.8% improvement compared to the previous best-performing HSNet and 3.6% improvement compared to the next-best PVT-CASCADE. Codes are available at https://github.com/ChaorongYang/PFD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元小夏完成签到,获得积分10
3秒前
4秒前
欣喜千易完成签到,获得积分10
5秒前
7秒前
宁静致远完成签到,获得积分0
8秒前
9秒前
10秒前
东方天奇完成签到,获得积分10
11秒前
dery发布了新的文献求助10
11秒前
TzR8完成签到,获得积分10
12秒前
ww完成签到,获得积分20
14秒前
Lori完成签到,获得积分10
14秒前
hizj发布了新的文献求助10
15秒前
CHOSENONE完成签到,获得积分10
16秒前
修梨完成签到,获得积分20
16秒前
王m完成签到 ,获得积分10
16秒前
科目三应助IAMXC采纳,获得80
16秒前
不要引力发布了新的文献求助10
17秒前
18秒前
hhy完成签到,获得积分20
19秒前
xiaozhejia完成签到,获得积分10
19秒前
碧蓝巧荷完成签到 ,获得积分10
19秒前
派大星完成签到,获得积分10
21秒前
23秒前
粥粥完成签到,获得积分10
23秒前
26秒前
清风慎独发布了新的文献求助10
27秒前
hhy发布了新的文献求助10
27秒前
C·麦塔芬完成签到,获得积分10
28秒前
LLL完成签到,获得积分10
28秒前
FashionBoy应助ww采纳,获得10
30秒前
30秒前
呆萌谷兰发布了新的文献求助10
31秒前
ruiii完成签到 ,获得积分10
31秒前
31秒前
北方集群完成签到,获得积分10
32秒前
科研通AI2S应助司纤户羽采纳,获得10
32秒前
WittingGU完成签到,获得积分0
32秒前
hhllhh完成签到 ,获得积分10
34秒前
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185