Screening of transition metal dual-atom catalysts for hydrogen evolution reaction based on high-throughput calculation and searching surrogate prediction model using simple features

对偶(语法数字) 催化作用 吞吐量 Atom(片上系统) 过渡金属 简单(哲学) 氢原子 材料科学 化学 计算化学 计算机科学 并行计算 有机化学 文学类 哲学 艺术 认识论 无线 烷基 电信
作者
Jiu-Ning Wang,Wei Xu,Jun He,Hao Ma,Wanglai Cen,Yu Shen
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:659: 159942-159942 被引量:6
标识
DOI:10.1016/j.apsusc.2024.159942
摘要

Dual-atom catalysts for hydrogen evolution reaction have received widespread attention, but precise screening and prediction of high-performance catalysts through simple methods remains a challenge. In this study, we perform high-throughput density functional theory (DFT) calculation and machine learning (ML) to screen and predict the transition metal dual-atom catalysts with N-doped graphene support (TMDACs) for acidic hydrogen evolution reaction. The Fe_Zn and V_Fe DACs were proposed to be the most promising candidates for Pt-based catalyst toward acidic HER from 406 TMDACs, based on the characteristics of HER activity, formation, thermodynamic stability, abundance, environmental friendliness. The Fe_Zn and V_Fe DACs with excellent HER performance is due to the synergistic effect deriving from the interaction between H and dual metal atoms in TMDACs. By determining 6 different ML models with four kind of input features, we find the artificial neural networks (ANN) model can predict the HER performance of TMDACs most accurately only using simple input features, including one-hot-encoding of atomic number and Gibbs free energy of transition metal single-atom catalyst. This work not only proposed the potential TMDACs with high HER performance, but also verified that the ANN model can accurately predict the HER activity of diatomic catalysts with simple input features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七一发布了新的文献求助10
刚刚
刚刚
刚刚
mirrovo发布了新的文献求助10
刚刚
kkk完成签到,获得积分10
1秒前
1秒前
搜集达人应助小晋采纳,获得10
1秒前
哈哈发布了新的文献求助10
1秒前
曲凯完成签到 ,获得积分10
1秒前
Hollow完成签到,获得积分10
2秒前
一方通行发布了新的文献求助100
2秒前
N型半导体完成签到,获得积分10
2秒前
2秒前
人如果发布了新的文献求助10
3秒前
Kra发布了新的文献求助10
3秒前
echo发布了新的文献求助10
3秒前
qiaoxin发布了新的文献求助10
3秒前
bkagyin应助DrWei采纳,获得10
5秒前
kuikichu完成签到,获得积分10
5秒前
宠仙发布了新的文献求助10
5秒前
刘大可发布了新的文献求助10
5秒前
Jasper应助积极马里奥采纳,获得30
5秒前
May应助白桃味的夏采纳,获得20
6秒前
MindAway完成签到,获得积分10
6秒前
辉仔完成签到,获得积分10
7秒前
Orange应助兔雳采纳,获得10
7秒前
开心的安南完成签到,获得积分20
8秒前
yuanquaner发布了新的文献求助10
8秒前
勤劳的以蓝完成签到,获得积分10
8秒前
8秒前
mumu完成签到,获得积分10
9秒前
10秒前
顾矜应助peanut采纳,获得10
10秒前
MoNesy发布了新的文献求助10
12秒前
cindy完成签到,获得积分10
12秒前
凡而不庸发布了新的文献求助20
13秒前
苗广山完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Orange应助爆螺钉采纳,获得10
14秒前
番茄汤锅完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198