High Precision and Robust Vehicle Localization Algorithm with Visual-LiDAR-IMU Fusion

激光雷达 惯性测量装置 计算机视觉 计算机科学 传感器融合 人工智能 融合 算法 遥感 地质学 语言学 哲学
作者
Jun Cheng,Liyan Zhang,Qihong Chen,Zhumu Fu,Luyao Du
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (8): 11029-11043 被引量:2
标识
DOI:10.1109/tvt.2024.3379435
摘要

Simultaneous localization and mapping (SLAM) has been indispensable for autonomous driving vehicles. Since the visual images are vulnerable to light interference and the light detection and ranging (LiDAR) heavily depends on geometric features of the surrounding scene, only relying on a camera or LiDAR show limitations in challenging environment. This paper proposes a Visual-LiDAR-IMU fusion method for high precision and robust vehicle localization. In the front end, the LiDAR point cloud is used to obtain the depth information of visual features with the synchronized IMU measurements are input into the pose estimation module in a loose-coupled manner. In the back end, two critical strategies are proposed to reduce the computation amount of the algorithm. Where the balanced selection strategy is based on keyframe and sliding window algorithms, and the classification optimization strategy is based on feature points and pose estimation assistance. In addition, an improved loop detection algorithm based on Iterative Closest Point (ICP) is proposed to reduce large-scale drift. Experimental results on the real-world scenes show that the average positioning error of our algorithm is 1.10 m, 0.91m, 1.04m in x, y, z-direction, the average rotation error is 1.03deg, 0.81deg, 0.70deg for roll, pitch, yaw, and the average resource utilization rate is 32.04% (CPU) and 13.18% (memory), the average consumption time is 24.87 ms. Compared with ORB-SLAM3, LVIO, LVI-SAM, R3LIVE and Fast-LIVO algorithms, the proposed algorithm has a better performance on both accuracy and robustness with best real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
机智采枫发布了新的文献求助10
3秒前
3秒前
李温温发布了新的文献求助10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
4秒前
壁上同年应助科研通管家采纳,获得10
4秒前
迟大猫应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得30
4秒前
迟大猫应助科研通管家采纳,获得10
4秒前
壁上同年应助科研通管家采纳,获得10
4秒前
Leon应助科研通管家采纳,获得10
4秒前
小飞七应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Li发布了新的文献求助20
5秒前
5秒前
dmm发布了新的文献求助10
6秒前
枯叶蝶发布了新的文献求助10
6秒前
杰森发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
ni完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
小京子发布了新的文献求助10
9秒前
Orange应助大鱼采纳,获得10
9秒前
CodeCraft应助精灵夜雨采纳,获得10
10秒前
10秒前
好饿啊发布了新的文献求助30
11秒前
11秒前
李健应助哦啦啦采纳,获得10
12秒前
科研通AI5应助李温温采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543397
求助须知:如何正确求助?哪些是违规求助? 3120781
关于积分的说明 9344128
捐赠科研通 2818826
什么是DOI,文献DOI怎么找? 1549809
邀请新用户注册赠送积分活动 722257
科研通“疑难数据库(出版商)”最低求助积分说明 713101