Intelligent kick warning based on drilling activity classification

绊倒 钻探 人工神经网络 过程(计算) 预警系统 数据挖掘 随钻测量 计算机科学 人工智能 工程类 机器学习 机械工程 电信 断路器 操作系统
作者
Shiming Duan,Xianzhi Song,Yi Cui,Zhengming Xu,Wei Liu,Jiasheng Fu,Zhaopeng Zhu,Dayu Li
标识
DOI:10.1016/j.geoen.2022.211408
摘要

Kick is one of the risks that frequently occur in the drilling process, so efficient and precision warning is very important. The missed warning will cause a blowout, which seriously affects the safety and economics of the well site. This study establishes a new kick warning model based on drilling activity classification. With the proposed model, a kick can be detected quickly and accurately. Firstly, the relationship between different drilling activities and drilling data is analyzed. The logical reasoning method of drilling activity classification using drilling data is established. And the validity of data based on this relationship is verified. Then the original data are processed to form different data sets. This paper builds random forest (RF) and artificial neural network (ANN) models with and without drilling activity classification respectively for a comprehensive comparison. The results show that the ANN model with drilling activity classification outperforms the model without activity classification. For the same data set, the accuracy of the ANN model is improved from 84.71% to 89.58%. Moreover, this model can also achieve less chance of missed warnings. With the comparison of drilling and tripping out that commonly cause the kick, the model accuracy for drilling (85.2%) is lower than that for tripping out (96.7%), due to the influence of more parameters. Among all drilling activities, the warning for drilling inactivity is the best with an accuracy of 99.2%, and the worst one is reaming with an accuracy of 65.9%. For the 33 kick cases, 32 cases are successfully warned using the model. In this study, the activity is recognized first, then the kick is judged by the kick warning model with drilling activity classification. The model can effectively extract the influence of parameter changes caused by the kick and reduce misjudgments. The combined model has strong robustness and good generalization ability, which is expected to facilitate safe drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gugu完成签到 ,获得积分10
1秒前
浅陌初心完成签到 ,获得积分10
1秒前
周PP完成签到,获得积分10
1秒前
杨幂完成签到,获得积分10
2秒前
枍枫完成签到,获得积分10
2秒前
小蘑菇应助开放的大侠采纳,获得10
2秒前
wxy完成签到,获得积分10
3秒前
3秒前
千秋完成签到,获得积分20
3秒前
KBRS完成签到,获得积分10
5秒前
傻自强呀完成签到,获得积分10
5秒前
cheling完成签到,获得积分10
7秒前
优美的孤云完成签到,获得积分10
7秒前
松柏完成签到 ,获得积分10
8秒前
傻自强呀发布了新的文献求助10
8秒前
CipherSage应助戴先森采纳,获得10
8秒前
0109完成签到,获得积分10
10秒前
10秒前
在水一方应助xue采纳,获得10
11秒前
ad阿金发布了新的文献求助10
11秒前
wdd完成签到 ,获得积分10
12秒前
我思故我在完成签到,获得积分0
12秒前
13秒前
14秒前
斯文以蓝完成签到 ,获得积分10
15秒前
rafa完成签到 ,获得积分10
15秒前
Doc_Ocean完成签到,获得积分10
15秒前
斯文败类应助犹豫嚣采纳,获得10
16秒前
16秒前
山月完成签到,获得积分10
16秒前
阳光的道消完成签到,获得积分10
16秒前
kkk发布了新的文献求助10
16秒前
凳子琪完成签到,获得积分10
18秒前
大鱼完成签到,获得积分10
18秒前
CCC完成签到 ,获得积分10
18秒前
Ava应助管不住嘴的迪迪采纳,获得10
19秒前
呦呦完成签到 ,获得积分10
19秒前
abc1122完成签到,获得积分10
19秒前
临妤发布了新的文献求助10
19秒前
小秃兄发布了新的文献求助10
19秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169