Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 人口学 社会学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:4
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj发布了新的文献求助10
刚刚
RK_404发布了新的文献求助10
1秒前
一一应助顺心傲南采纳,获得10
2秒前
w1b完成签到,获得积分10
3秒前
4秒前
科目三应助一颗橘子洲头采纳,获得30
6秒前
cjh关闭了cjh文献求助
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
bin发布了新的文献求助30
15秒前
无限的含蕾完成签到,获得积分10
15秒前
888完成签到 ,获得积分10
16秒前
Owen应助今天要清零采纳,获得10
16秒前
18秒前
18秒前
奋斗小医生完成签到,获得积分10
18秒前
王志杰发布了新的文献求助10
18秒前
周灏烜完成签到,获得积分10
19秒前
111发布了新的文献求助10
20秒前
20秒前
mylene_完成签到,获得积分10
21秒前
21秒前
畅快城完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
点凌蝶发布了新的文献求助10
23秒前
23秒前
彩色阑悦发布了新的文献求助10
23秒前
24秒前
顾矜应助花开花落花无悔采纳,获得10
24秒前
24秒前
25秒前
花花发布了新的文献求助10
25秒前
25秒前
26秒前
luanzhaohui发布了新的文献求助10
26秒前
棋士发布了新的文献求助30
26秒前
27秒前
陈乙己发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685