Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 人口学 社会学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:3
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助合适的人类采纳,获得10
刚刚
华贞完成签到,获得积分10
2秒前
情怀应助WuFen采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
一只獾獾应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
在水一方应助废柴采纳,获得10
5秒前
Jasper应助琉璃岁月采纳,获得10
5秒前
夏远航应助andrele采纳,获得200
5秒前
含蓄妖丽发布了新的文献求助10
6秒前
景自端发布了新的文献求助10
6秒前
purplelove发布了新的文献求助10
7秒前
7秒前
8秒前
陳.发布了新的文献求助20
8秒前
GEeZiii完成签到,获得积分10
8秒前
Zyk完成签到,获得积分10
8秒前
希望天下0贩的0应助Zp采纳,获得10
10秒前
10秒前
甜甜的完成签到,获得积分10
10秒前
大个应助关显锋采纳,获得10
11秒前
搜集达人应助Ningxin采纳,获得10
11秒前
11秒前
HHH发布了新的文献求助10
14秒前
14秒前
甜甜的发布了新的文献求助10
14秒前
14秒前
爱的魔力转圈圈完成签到,获得积分10
14秒前
lllll应助周末万岁采纳,获得50
15秒前
老白茶完成签到,获得积分10
15秒前
李爱国应助xiaooooo采纳,获得10
15秒前
123PY应助南江悍匪采纳,获得200
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146022
求助须知:如何正确求助?哪些是违规求助? 2797382
关于积分的说明 7824093
捐赠科研通 2453743
什么是DOI,文献DOI怎么找? 1305846
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491