Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 人口学 社会学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:4
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaxif完成签到,获得积分10
1秒前
2秒前
2秒前
外向烤鸡完成签到,获得积分10
2秒前
candy teen发布了新的文献求助10
3秒前
Zhang完成签到,获得积分10
3秒前
嘎嘎的鸡神完成签到,获得积分10
3秒前
liars完成签到 ,获得积分10
4秒前
如意的新梅完成签到,获得积分10
4秒前
沅宝完成签到 ,获得积分10
4秒前
科研通AI2S应助禾苗采纳,获得10
4秒前
义气若冰发布了新的文献求助10
4秒前
5秒前
Coke完成签到,获得积分10
5秒前
5秒前
5秒前
juan完成签到,获得积分10
5秒前
烂漫夜梅完成签到,获得积分10
5秒前
平淡南松发布了新的文献求助10
5秒前
yao完成签到,获得积分10
6秒前
6秒前
笑点低的傲白完成签到,获得积分10
6秒前
6秒前
一路硕博完成签到,获得积分10
6秒前
稳重奇异果完成签到,获得积分10
7秒前
小小完成签到 ,获得积分10
7秒前
Zhou发布了新的文献求助10
7秒前
司空悒完成签到,获得积分0
7秒前
pp完成签到,获得积分10
7秒前
8秒前
冷静灵竹完成签到,获得积分10
8秒前
cdercder应助Ssyong采纳,获得10
8秒前
科研八戒完成签到,获得积分10
8秒前
9秒前
新野完成签到,获得积分10
9秒前
爱卿5271完成签到,获得积分0
10秒前
efr发布了新的文献求助10
10秒前
生动的踏歌完成签到,获得积分10
10秒前
CodeCraft应助echoxq采纳,获得10
10秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750101
求助须知:如何正确求助?哪些是违规求助? 3293429
关于积分的说明 10081721
捐赠科研通 3008743
什么是DOI,文献DOI怎么找? 1652401
邀请新用户注册赠送积分活动 787440
科研通“疑难数据库(出版商)”最低求助积分说明 752179