Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 社会学 人口学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:4
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助自觉匪采纳,获得10
刚刚
刘小天发布了新的文献求助10
刚刚
1秒前
耶耶关注了科研通微信公众号
1秒前
量子星尘发布了新的文献求助10
2秒前
byX完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
脑洞疼应助淮竹采纳,获得10
5秒前
jennifer_zhuang完成签到,获得积分10
5秒前
kushdw发布了新的文献求助10
7秒前
打打应助小面脑袋采纳,获得10
7秒前
8秒前
ding应助liu采纳,获得30
8秒前
8秒前
8秒前
asda完成签到,获得积分10
8秒前
10秒前
10秒前
壮观百招发布了新的文献求助10
11秒前
11秒前
12秒前
背后中心发布了新的文献求助10
12秒前
Jonathan完成签到,获得积分10
12秒前
12秒前
hang完成签到,获得积分10
13秒前
13秒前
chenxy发布了新的文献求助10
13秒前
14秒前
zycdx3906完成签到 ,获得积分10
15秒前
15秒前
16秒前
飞飞发布了新的文献求助10
17秒前
17秒前
17秒前
钱钱钱发布了新的文献求助10
17秒前
邢克宇发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770522
求助须知:如何正确求助?哪些是违规求助? 5585594
关于积分的说明 15424400
捐赠科研通 4904070
什么是DOI,文献DOI怎么找? 2638501
邀请新用户注册赠送积分活动 1586366
关于科研通互助平台的介绍 1541437