Feasibility of an NIR spectral calibration transfer algorithm based on optimized feature variables to predict tobacco samples in different states

偏最小二乘回归 校准 数学 统计 均方误差 人口 算法 变量消去 近红外光谱 生物系统 计算机科学 人工智能 光学 物理 生物 人口学 社会学 推论
作者
Yingrui Geng,Hongfei Ni,Huanchao Shen,Hui Wang,Jizhong Wu,Keyu Pan,Yongjiang Wu,Yong Chen,Yingjie Luo,Tengfei Xu,Xuesong Liu
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (6): 719-728 被引量:4
标识
DOI:10.1039/d2ay01805e
摘要

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的博涛关注了科研通微信公众号
1秒前
依然灬聆听完成签到,获得积分10
1秒前
蓝天应助Shannon采纳,获得10
4秒前
6秒前
6秒前
山阳县藏兵洞谷二完成签到,获得积分10
7秒前
酷波er应助panpanda采纳,获得10
8秒前
yunyueqixun完成签到,获得积分10
8秒前
科研通AI2S应助现实的宝马采纳,获得10
10秒前
mimi发布了新的文献求助10
11秒前
木瓜完成签到,获得积分10
11秒前
Tqy发布了新的文献求助20
13秒前
14秒前
Fluoxtine完成签到,获得积分10
14秒前
16秒前
科研通AI6应助sjfczyh采纳,获得10
17秒前
爱撒娇的香烟完成签到,获得积分10
17秒前
17秒前
19秒前
mouxq发布了新的文献求助10
20秒前
22秒前
23秒前
23秒前
24秒前
24秒前
112完成签到,获得积分10
25秒前
认真平蝶完成签到 ,获得积分10
27秒前
干净的烧鹅完成签到,获得积分10
33秒前
肥烊完成签到,获得积分10
33秒前
魔幻灯泡完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
xsss完成签到 ,获得积分10
37秒前
小坤同学完成签到,获得积分0
38秒前
39秒前
Lesile发布了新的文献求助10
40秒前
旺旺发布了新的文献求助10
42秒前
43秒前
科研通AI6应助落后博采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528