How solar radiation forecasting impacts the utilization of solar energy: A critical review

均方误差 卫星 气象学 时间范围 计算机科学 太阳能 网格 环境科学 数值天气预报 遥感 数学 工程类 数学优化 统计 地理 航空航天工程 电气工程 几何学
作者
Naveen M. Krishnan,K. Ravi Kumar,Chandrapal Singh Inda
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:388: 135860-135860 被引量:18
标识
DOI:10.1016/j.jclepro.2023.135860
摘要

The demand for energy generation from solar energy resource has been exponentially increasing in recent years. It is integral for a grid operator to maintain the balance between the demand and supply of the grid. Solar radiation forecasting paves the way for proper planning, reserve management, and elude penalty since solar energy is sporadic in nature. Several methods can forecast solar radiation; the prior classifications are machine learning models, numerical weather prediction models, satellite imaging, sky imager and hybrid model. This article presents a comprehensive review of all those models with the working principle, challenges and future research direction. Sky imagers provide the Normalized Root Mean Square Error (nRMSE) value of 6%–9% for a time horizon of 30 min, and the satellite imagery technique provides the Root Mean Square Error (RMSE) value of 61.28 W/m2 – 346.05 W/m2 for a time horizon of 4 h ahead. Similarly, NWP mesoscale models provide the RMSE value of 411.6 W/m2 - for three days ahead of forecasting with a spatial resolution of 50 km. Machine learning models are good at delivering accurate results with the time horizon up to 1 day ahead by yielding the results of RMSE in the range of 0.1170 W/m2 – 93.04 W/m2. Deep learning and hybrid models are being developed to overcome the issues faced by the standalone techniques. In many research works, artificial intelligence techniques are integrated with NWP models, sky imagers and satellite imagers to improve the data handling algorithm, which implicitly results in forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxf完成签到,获得积分20
1秒前
cassiecx发布了新的文献求助10
1秒前
七七发布了新的文献求助10
1秒前
2秒前
福明明完成签到,获得积分10
2秒前
zxf发布了新的文献求助10
2秒前
3秒前
要努力写文章的小白完成签到,获得积分10
3秒前
FashionBoy应助蜜蜜芪采纳,获得10
3秒前
gwt完成签到,获得积分10
4秒前
fish112发布了新的文献求助10
4秒前
Jing发布了新的文献求助10
4秒前
4秒前
浮游应助畅快的雅青采纳,获得10
5秒前
5秒前
hbhbj发布了新的文献求助10
5秒前
wyp发布了新的文献求助10
6秒前
prode完成签到,获得积分10
7秒前
7秒前
lalala应助黎明森采纳,获得10
7秒前
8秒前
sdaDAS发布了新的文献求助10
8秒前
9秒前
CipherSage应助guochang采纳,获得10
9秒前
Edward发布了新的文献求助30
10秒前
浮游应助和老爹豆豆采纳,获得10
10秒前
闫小天天完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
666发布了新的文献求助10
12秒前
英俊的铭应助热情的远锋采纳,获得10
12秒前
小二郎应助vebb采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
和谐诗双发布了新的文献求助10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058