SFE: A Simple, Fast, and Efficient Feature Selection Algorithm for High-Dimensional Data

特征选择 粒子群优化 计算机科学 维数之咒 算法 选择(遗传算法) 降维 特征(语言学) 模式(计算机接口) 操作员(生物学) 数学 人工智能 转录因子 基因 生物化学 操作系统 哲学 语言学 抑制因子 化学
作者
Behrouz Ahadzadeh,Moloud Abdar,Fatemeh Safara,Abbas Khosravi,Mohammad Bagher Menhaj,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1896-1911 被引量:67
标识
DOI:10.1109/tevc.2023.3238420
摘要

In this article, a new feature selection (FS) algorithm, called simple, fast, and efficient (SFE), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using a search agent and two operators: 1) nonselection and 2) selection. It comprises two phases: 1) exploration and 2) exploitation. In the exploration phase, the nonselection operator performs a global search in the entire problem search space for the irrelevant, redundant, trivial, and noisy features and changes the status of the features from selected mode to nonselected mode. In the exploitation phase, the selection operator searches the problem search space for the features with a high impact on the classification results and changes the status of the features from nonselected mode to selected mode. The proposed SFE is successful in FS from high-dimensional datasets. However, after reducing the dimensionality of a dataset, its performance cannot be increased significantly. In these situations, an evolutionary computational method could be used to find a more efficient subset of features in the new and reduced search space. To overcome this issue, this article proposes a hybrid algorithm, SFE-PSO (particle swarm optimization) to find an optimal feature subset. The efficiency and effectiveness of the SFE and the SFE-PSO for FS are compared on 40 high-dimensional datasets. Their performances were compared with six recently proposed FS algorithms. The results obtained indicate that the two proposed algorithms significantly outperform the other algorithms and can be used as efficient and effective algorithms in selecting features from high-dimensional datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
站走跑完成签到 ,获得积分10
1秒前
常大美女发布了新的文献求助10
1秒前
1秒前
阔达的水壶完成签到 ,获得积分10
1秒前
2秒前
科研小农民完成签到,获得积分10
2秒前
2秒前
3秒前
什么什么哇偶完成签到 ,获得积分10
3秒前
马夋发布了新的文献求助10
4秒前
decademe完成签到,获得积分10
4秒前
4秒前
roclie完成签到,获得积分10
4秒前
媛肖完成签到,获得积分10
5秒前
养猪的大哥完成签到 ,获得积分10
6秒前
yyw完成签到 ,获得积分10
6秒前
dongli6536完成签到,获得积分10
6秒前
6秒前
6秒前
孤独梦安发布了新的文献求助10
6秒前
nnnnn完成签到 ,获得积分10
7秒前
Wu完成签到 ,获得积分10
7秒前
果实发布了新的文献求助30
7秒前
会飞舞的熊完成签到 ,获得积分10
7秒前
山野村夫完成签到,获得积分10
7秒前
8秒前
小涛发布了新的文献求助10
8秒前
9秒前
9秒前
勤奋柚子完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
斯文败类应助细腻海蓝采纳,获得10
10秒前
lllll完成签到,获得积分20
11秒前
王大大完成签到,获得积分10
11秒前
小呆毛完成签到 ,获得积分10
12秒前
鲤鱼完成签到 ,获得积分10
12秒前
星辰大海应助leyi采纳,获得10
12秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960337
求助须知:如何正确求助?哪些是违规求助? 3506438
关于积分的说明 11130396
捐赠科研通 3238607
什么是DOI,文献DOI怎么找? 1789826
邀请新用户注册赠送积分活动 871947
科研通“疑难数据库(出版商)”最低求助积分说明 803099