SFE: A Simple, Fast, and Efficient Feature Selection Algorithm for High-Dimensional Data

特征选择 粒子群优化 计算机科学 维数之咒 算法 选择(遗传算法) 降维 特征(语言学) 模式(计算机接口) 操作员(生物学) 数学 人工智能 哲学 语言学 生物化学 化学 抑制因子 转录因子 基因 操作系统
作者
Behrouz Ahadzadeh,Moloud Abdar,Fatemeh Safara,Abbas Khosravi,Mohammad Bagher Menhaj,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1896-1911 被引量:27
标识
DOI:10.1109/tevc.2023.3238420
摘要

In this article, a new feature selection (FS) algorithm, called simple, fast, and efficient (SFE), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using a search agent and two operators: 1) nonselection and 2) selection. It comprises two phases: 1) exploration and 2) exploitation. In the exploration phase, the nonselection operator performs a global search in the entire problem search space for the irrelevant, redundant, trivial, and noisy features and changes the status of the features from selected mode to nonselected mode. In the exploitation phase, the selection operator searches the problem search space for the features with a high impact on the classification results and changes the status of the features from nonselected mode to selected mode. The proposed SFE is successful in FS from high-dimensional datasets. However, after reducing the dimensionality of a dataset, its performance cannot be increased significantly. In these situations, an evolutionary computational method could be used to find a more efficient subset of features in the new and reduced search space. To overcome this issue, this article proposes a hybrid algorithm, SFE-PSO (particle swarm optimization) to find an optimal feature subset. The efficiency and effectiveness of the SFE and the SFE-PSO for FS are compared on 40 high-dimensional datasets. Their performances were compared with six recently proposed FS algorithms. The results obtained indicate that the two proposed algorithms significantly outperform the other algorithms and can be used as efficient and effective algorithms in selecting features from high-dimensional datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎幻丝应助xx采纳,获得20
刚刚
曹小仙男完成签到 ,获得积分10
刚刚
hxpxp完成签到,获得积分10
1秒前
顺心冬易发布了新的文献求助10
1秒前
踏实的沛容完成签到,获得积分20
2秒前
小迷糊发布了新的文献求助20
2秒前
2秒前
咿咿呀呀完成签到,获得积分10
3秒前
搜集达人应助stop here采纳,获得10
3秒前
4秒前
sun发布了新的文献求助10
4秒前
about完成签到,获得积分10
4秒前
曹姗完成签到,获得积分10
4秒前
Flynn完成签到,获得积分10
4秒前
熊仔一百完成签到 ,获得积分10
5秒前
orixero应助聪慧海豚采纳,获得10
6秒前
6秒前
CodeCraft应助西门性冷淡采纳,获得10
6秒前
明天不打球完成签到,获得积分10
6秒前
cookie完成签到,获得积分10
7秒前
7秒前
7秒前
张英俊发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
haifenghou发布了新的文献求助20
11秒前
sun完成签到,获得积分10
12秒前
qin希望应助大力浩轩采纳,获得10
12秒前
无尽夏完成签到,获得积分10
12秒前
隐形的大神完成签到,获得积分10
13秒前
123发布了新的文献求助20
14秒前
光明哨兵发布了新的文献求助10
15秒前
SciGPT应助乖乖采纳,获得10
17秒前
one发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助大脚丫采纳,获得10
18秒前
西门性冷淡完成签到,获得积分10
18秒前
浅碎时光完成签到,获得积分10
19秒前
丘比特应助Lida采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847