A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction

预言 自编码 计算机科学 深度学习 马氏距离 人工智能 集成学习 集合预报 机器学习 卷积神经网络 数据挖掘
作者
Yujie Cheng,Jiyan Zeng,Zili Wang,Dengwei Song
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:135: 110041-110041 被引量:15
标识
DOI:10.1016/j.asoc.2023.110041
摘要

Remaining useful life (RUL) prediction for aircraft engines is crucial to enabling predictive maintenance. Current RUL predictions for aircraft engines mainly focus on model-based and data-driven methods that employ a single model or algorithm. Few studies on RUL prediction have been conducted by using an ensemble method that combines prediction results from multiple algorithms. As an emerging frontier technology, ensemble learning has become a topic of interest in the field of RUL prediction because it can achieve better prediction performance than single model. In this study, a health-state-related (HSR) ensemble deep learning method that considers different degradation laws of the aircraft engine is proposed for RUL prediction. First, a health baseline is constructed and lifetime degradation is divided into several health states to represent different degradation laws. The Mahalanobis distance to the health baseline is utilized to recognize the current health state of the aircraft engine. Second, three deep learning methods, namely stacked autoencoder, convolutional neural network and long short-term memory, are selected as member algorithms and trained on different health states. Thus, different member algorithm sets are constructed for different health states, learning different degradation laws in different health states. Third, self-adaptive ensemble weight sets for different health states are calculated by applying ridge regression, which can comprehensively utilize the prediction results of each algorithm model in different health states. A case study is conducted by using a dataset of the PHM data challenge to demonstrate the effectiveness of the proposed method. The experiment result shows that the proposed HSR ensemble deep learning method can considerably improve prediction performance compared with methods that are based on a single prediction algorithm and ensemble learning method that does not consider the health state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洛苏发布了新的文献求助10
1秒前
1秒前
Zzzzzzz发布了新的文献求助10
2秒前
牛马婕完成签到,获得积分10
2秒前
3秒前
孙元完成签到,获得积分10
3秒前
张天宝真的爱科研完成签到,获得积分10
4秒前
Owen应助沃德天采纳,获得10
5秒前
6秒前
牛马婕发布了新的文献求助10
6秒前
7秒前
8秒前
Thien应助marcg4采纳,获得10
8秒前
所所应助蒲云海采纳,获得10
10秒前
12秒前
shasha完成签到,获得积分10
12秒前
12秒前
Liang_Xinxin发布了新的文献求助30
15秒前
传奇3应助草中有粑粑采纳,获得10
17秒前
17秒前
可爱的函函应助爱笑以松采纳,获得10
18秒前
科研通AI6应助亲亲亲采纳,获得10
19秒前
科研通AI6应助Zzzzzzz采纳,获得10
19秒前
王博林发布了新的文献求助10
19秒前
LBY发布了新的文献求助30
21秒前
21秒前
23秒前
25秒前
26秒前
26秒前
蒲云海发布了新的文献求助10
28秒前
wwqc完成签到,获得积分0
29秒前
30秒前
skip发布了新的文献求助10
30秒前
31秒前
miao发布了新的文献求助10
31秒前
32秒前
共享精神应助浮浮世世采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471