A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction

预言 自编码 计算机科学 深度学习 马氏距离 人工智能 集成学习 集合预报 机器学习 卷积神经网络 数据挖掘
作者
Yujie Cheng,Jiyan Zeng,Zili Wang,Dengwei Song
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:135: 110041-110041 被引量:15
标识
DOI:10.1016/j.asoc.2023.110041
摘要

Remaining useful life (RUL) prediction for aircraft engines is crucial to enabling predictive maintenance. Current RUL predictions for aircraft engines mainly focus on model-based and data-driven methods that employ a single model or algorithm. Few studies on RUL prediction have been conducted by using an ensemble method that combines prediction results from multiple algorithms. As an emerging frontier technology, ensemble learning has become a topic of interest in the field of RUL prediction because it can achieve better prediction performance than single model. In this study, a health-state-related (HSR) ensemble deep learning method that considers different degradation laws of the aircraft engine is proposed for RUL prediction. First, a health baseline is constructed and lifetime degradation is divided into several health states to represent different degradation laws. The Mahalanobis distance to the health baseline is utilized to recognize the current health state of the aircraft engine. Second, three deep learning methods, namely stacked autoencoder, convolutional neural network and long short-term memory, are selected as member algorithms and trained on different health states. Thus, different member algorithm sets are constructed for different health states, learning different degradation laws in different health states. Third, self-adaptive ensemble weight sets for different health states are calculated by applying ridge regression, which can comprehensively utilize the prediction results of each algorithm model in different health states. A case study is conducted by using a dataset of the PHM data challenge to demonstrate the effectiveness of the proposed method. The experiment result shows that the proposed HSR ensemble deep learning method can considerably improve prediction performance compared with methods that are based on a single prediction algorithm and ensemble learning method that does not consider the health state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净白容发布了新的文献求助10
刚刚
刚刚
Akim应助lzcnextdoor采纳,获得10
刚刚
tutu发布了新的文献求助10
1秒前
torfun发布了新的文献求助10
1秒前
雨林发布了新的文献求助10
2秒前
燕儿应助嗦了蜜采纳,获得10
2秒前
xy发布了新的文献求助30
2秒前
CR完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
sanqian911完成签到,获得积分10
3秒前
何垠禹完成签到,获得积分10
3秒前
长生完成签到 ,获得积分10
3秒前
11111发布了新的文献求助10
3秒前
似水流年完成签到,获得积分10
3秒前
4秒前
落寞易形完成签到,获得积分10
4秒前
liuye0202完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
7秒前
科研通AI5应助torfun采纳,获得10
7秒前
韩程果完成签到 ,获得积分20
7秒前
papi完成签到 ,获得积分10
7秒前
like411发布了新的文献求助10
7秒前
feizhuliu完成签到,获得积分10
8秒前
科研通AI2S应助龍焱采纳,获得10
8秒前
棉花糖吖吖吖完成签到 ,获得积分10
8秒前
玛丽完成签到,获得积分10
9秒前
9秒前
酷波er应助给我好好读书采纳,获得10
9秒前
干净白容完成签到,获得积分10
9秒前
Ava应助hi小豆采纳,获得10
10秒前
柔弱小懒虫完成签到 ,获得积分10
10秒前
TobyGarfielD发布了新的文献求助10
10秒前
心灵美的石头完成签到,获得积分10
10秒前
CipherSage应助5High_0采纳,获得10
11秒前
哇哈哈哈发布了新的文献求助10
11秒前
韩程果关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743