A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction

预言 自编码 计算机科学 深度学习 马氏距离 人工智能 集成学习 集合预报 机器学习 卷积神经网络 数据挖掘
作者
Yujie Cheng,Jiyan Zeng,Zili Wang,Dengwei Song
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:135: 110041-110041 被引量:15
标识
DOI:10.1016/j.asoc.2023.110041
摘要

Remaining useful life (RUL) prediction for aircraft engines is crucial to enabling predictive maintenance. Current RUL predictions for aircraft engines mainly focus on model-based and data-driven methods that employ a single model or algorithm. Few studies on RUL prediction have been conducted by using an ensemble method that combines prediction results from multiple algorithms. As an emerging frontier technology, ensemble learning has become a topic of interest in the field of RUL prediction because it can achieve better prediction performance than single model. In this study, a health-state-related (HSR) ensemble deep learning method that considers different degradation laws of the aircraft engine is proposed for RUL prediction. First, a health baseline is constructed and lifetime degradation is divided into several health states to represent different degradation laws. The Mahalanobis distance to the health baseline is utilized to recognize the current health state of the aircraft engine. Second, three deep learning methods, namely stacked autoencoder, convolutional neural network and long short-term memory, are selected as member algorithms and trained on different health states. Thus, different member algorithm sets are constructed for different health states, learning different degradation laws in different health states. Third, self-adaptive ensemble weight sets for different health states are calculated by applying ridge regression, which can comprehensively utilize the prediction results of each algorithm model in different health states. A case study is conducted by using a dataset of the PHM data challenge to demonstrate the effectiveness of the proposed method. The experiment result shows that the proposed HSR ensemble deep learning method can considerably improve prediction performance compared with methods that are based on a single prediction algorithm and ensemble learning method that does not consider the health state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
微米完成签到,获得积分10
1秒前
2秒前
2秒前
Orange应助zhuxu采纳,获得10
4秒前
小遇完成签到 ,获得积分10
4秒前
悠悠发布了新的文献求助10
5秒前
MMMV完成签到,获得积分10
6秒前
9秒前
小蘑菇应助高挑的迎夏采纳,获得10
9秒前
tannie完成签到 ,获得积分0
10秒前
隐形珊完成签到,获得积分10
12秒前
希望天下0贩的0应助niniyiya采纳,获得10
12秒前
13秒前
13秒前
14秒前
Orange应助圈圈采纳,获得10
16秒前
aa完成签到,获得积分10
17秒前
愉快若剑发布了新的文献求助10
18秒前
Godlove发布了新的文献求助10
18秒前
kkk发布了新的文献求助10
19秒前
21秒前
酷波er应助方法采纳,获得10
22秒前
23秒前
Godlove完成签到,获得积分10
24秒前
24秒前
打打应助kkk采纳,获得10
25秒前
Jared应助小鱼头采纳,获得10
26秒前
27秒前
飞快的孱完成签到,获得积分10
29秒前
李爱国应助慕木采纳,获得10
29秒前
fengfeng发布了新的文献求助10
30秒前
psg完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
浮游应助求神拜佛采纳,获得10
32秒前
浮游应助求神拜佛采纳,获得10
32秒前
32秒前
sdfgv发布了新的文献求助10
34秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
34秒前
完美世界应助百宝采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650