A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction

预言 自编码 计算机科学 深度学习 马氏距离 人工智能 集成学习 集合预报 机器学习 卷积神经网络 数据挖掘
作者
Yujie Cheng,Jiyan Zeng,Zili Wang,Dengwei Song
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:135: 110041-110041 被引量:5
标识
DOI:10.1016/j.asoc.2023.110041
摘要

Remaining useful life (RUL) prediction for aircraft engines is crucial to enabling predictive maintenance. Current RUL predictions for aircraft engines mainly focus on model-based and data-driven methods that employ a single model or algorithm. Few studies on RUL prediction have been conducted by using an ensemble method that combines prediction results from multiple algorithms. As an emerging frontier technology, ensemble learning has become a topic of interest in the field of RUL prediction because it can achieve better prediction performance than single model. In this study, a health-state-related (HSR) ensemble deep learning method that considers different degradation laws of the aircraft engine is proposed for RUL prediction. First, a health baseline is constructed and lifetime degradation is divided into several health states to represent different degradation laws. The Mahalanobis distance to the health baseline is utilized to recognize the current health state of the aircraft engine. Second, three deep learning methods, namely stacked autoencoder, convolutional neural network and long short-term memory, are selected as member algorithms and trained on different health states. Thus, different member algorithm sets are constructed for different health states, learning different degradation laws in different health states. Third, self-adaptive ensemble weight sets for different health states are calculated by applying ridge regression, which can comprehensively utilize the prediction results of each algorithm model in different health states. A case study is conducted by using a dataset of the PHM data challenge to demonstrate the effectiveness of the proposed method. The experiment result shows that the proposed HSR ensemble deep learning method can considerably improve prediction performance compared with methods that are based on a single prediction algorithm and ensemble learning method that does not consider the health state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王关注了科研通微信公众号
刚刚
刚刚
zycorner发布了新的文献求助10
刚刚
1秒前
xjjw发布了新的文献求助10
1秒前
1秒前
无花果应助pasdzxcfvgb采纳,获得10
1秒前
Lemuel完成签到,获得积分10
3秒前
lijingwen完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
朱朱子发布了新的文献求助10
5秒前
小马甲应助Halo采纳,获得10
5秒前
6秒前
兜兜玲儿完成签到,获得积分10
6秒前
6秒前
彩虹猫完成签到 ,获得积分10
6秒前
乐乐发布了新的文献求助10
7秒前
Gergeo应助白华苍松采纳,获得20
7秒前
华仔应助xjjw采纳,获得10
8秒前
二三发布了新的文献求助10
8秒前
hhhuan发布了新的文献求助10
9秒前
zsc发布了新的文献求助10
9秒前
逗号先生完成签到,获得积分20
9秒前
浩浩发布了新的文献求助10
10秒前
薰硝壤应助NIER采纳,获得20
10秒前
乱世才子完成签到,获得积分10
11秒前
盼盼完成签到,获得积分10
11秒前
11秒前
大个应助lss采纳,获得10
12秒前
陶远望完成签到,获得积分10
12秒前
Boris完成签到 ,获得积分10
12秒前
星燃完成签到,获得积分10
12秒前
12秒前
玩个锤子完成签到,获得积分10
13秒前
彭于晏应助kakaC采纳,获得30
14秒前
MISSzheng完成签到,获得积分10
14秒前
科研通AI2S应助jianrobsim采纳,获得10
14秒前
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919