Image segmentation and flow prediction of digital rock with U-net network

均方误差 磁导率 人工智能 地质学 随机森林 分割 计算机科学 模式识别(心理学) 数学 统计 遗传学 生物
作者
Fuyong Wang,Yun Zai
出处
期刊:Advances in Water Resources [Elsevier]
卷期号:172: 104384-104384 被引量:10
标识
DOI:10.1016/j.advwatres.2023.104384
摘要

Computed tomography (CT) images of sandstone contain rich reservoir information. Analyzing digital rock images is important for geological research and the flow in the subsurface. This paper presents a workflow for assessing digital rock petrophysical properties based on machine learning techniques, including 1) automatic segmentation of sandstone rock images using U-net networks, 2) permeability prediction using machine learning, and 3) flow simulation by deep learning. First, using the U-net network, the rock images are binary-segmented into matrix and pore, and multisegmented into the matrix, pore, and mineral. The accuracy and intersection over union (IOU) are used to evaluate the performance of image segmentation. The accuracy and IOU of binary segmentation results are 99.87% and 0.9986, and the results for multi-segmentation are 96.77% and 0.7281, respectively. Then, the key features of CT images influencing sandstone permeability are extracted, and the analysis of image features reveals that the hydraulic radius is the most important parameter for permeability prediction. After that, the sandstone permeability is predicted by long short-term memory (LSTM) and random forest (RF) and then compared with the permeability calculated by the lattice Boltzmann (LBM) method. The mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) are used to quantitatively evaluate the error of permeability prediction. The studies show that the precision of RF in permeability prediction is higher than that of LSTM, and when all the feature parameters are used as input, the accuracy of permeability prediction is a little higher than that when only the hydraulic radius is used as input. Finally, this paper refines a new U-net model to predict the flow velocity field from CT images, and this new U-net model can reduce the computation time by 98.59% compared with the LBM method. This study will be significant for applying deep learning in simulate the flow in digital rock.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LJGoXn完成签到,获得积分10
1秒前
xiaoxx发布了新的文献求助10
1秒前
孙栋发布了新的文献求助30
2秒前
3秒前
他们叫我张国荣完成签到,获得积分10
3秒前
7秒前
Do完成签到,获得积分10
8秒前
星辰大海应助花开采纳,获得10
8秒前
香蕉觅云应助xiaoxx采纳,获得10
11秒前
沙脑完成签到 ,获得积分10
12秒前
13秒前
yuu完成签到,获得积分20
15秒前
15秒前
bkagyin应助鱼尾雯采纳,获得10
16秒前
孙栋发布了新的文献求助30
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
吉祥应助科研通管家采纳,获得20
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得20
18秒前
curtisness应助科研通管家采纳,获得10
18秒前
18秒前
思源应助科研通管家采纳,获得10
18秒前
宇麦达发布了新的文献求助10
18秒前
铠甲勇士完成签到,获得积分10
21秒前
高速旋转老沁完成签到 ,获得积分10
21秒前
22秒前
28秒前
ding应助调皮寄瑶采纳,获得10
28秒前
包容的绝义完成签到,获得积分10
28秒前
完美世界应助张智信采纳,获得10
29秒前
30秒前
31秒前
yuu发布了新的文献求助10
31秒前
思源应助EShan采纳,获得10
33秒前
豆子发布了新的文献求助10
37秒前
37秒前
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870