Image segmentation and flow prediction of digital rock with U-net network

均方误差 磁导率 人工智能 地质学 随机森林 分割 计算机科学 模式识别(心理学) 数学 统计 遗传学 生物
作者
Fuyong Wang,Yun Zai
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:172: 104384-104384 被引量:19
标识
DOI:10.1016/j.advwatres.2023.104384
摘要

Computed tomography (CT) images of sandstone contain rich reservoir information. Analyzing digital rock images is important for geological research and the flow in the subsurface. This paper presents a workflow for assessing digital rock petrophysical properties based on machine learning techniques, including 1) automatic segmentation of sandstone rock images using U-net networks, 2) permeability prediction using machine learning, and 3) flow simulation by deep learning. First, using the U-net network, the rock images are binary-segmented into matrix and pore, and multisegmented into the matrix, pore, and mineral. The accuracy and intersection over union (IOU) are used to evaluate the performance of image segmentation. The accuracy and IOU of binary segmentation results are 99.87% and 0.9986, and the results for multi-segmentation are 96.77% and 0.7281, respectively. Then, the key features of CT images influencing sandstone permeability are extracted, and the analysis of image features reveals that the hydraulic radius is the most important parameter for permeability prediction. After that, the sandstone permeability is predicted by long short-term memory (LSTM) and random forest (RF) and then compared with the permeability calculated by the lattice Boltzmann (LBM) method. The mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) are used to quantitatively evaluate the error of permeability prediction. The studies show that the precision of RF in permeability prediction is higher than that of LSTM, and when all the feature parameters are used as input, the accuracy of permeability prediction is a little higher than that when only the hydraulic radius is used as input. Finally, this paper refines a new U-net model to predict the flow velocity field from CT images, and this new U-net model can reduce the computation time by 98.59% compared with the LBM method. This study will be significant for applying deep learning in simulate the flow in digital rock.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
周周发布了新的文献求助10
2秒前
3秒前
大个应助鱼人采纳,获得10
4秒前
烟花应助不万能青年采纳,获得10
5秒前
柴柴完成签到,获得积分10
6秒前
jiang完成签到 ,获得积分10
6秒前
科研通AI2S应助qianlu采纳,获得10
7秒前
鱼生发布了新的文献求助10
7秒前
老木虫发布了新的文献求助10
7秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
8秒前
8秒前
8秒前
鄢廷芮完成签到 ,获得积分10
8秒前
碧蓝的汽车完成签到,获得积分10
9秒前
锅包肉完成签到 ,获得积分10
10秒前
11秒前
12秒前
陶醉书包完成签到 ,获得积分10
14秒前
QSNI发布了新的文献求助10
15秒前
顾子墨完成签到,获得积分10
16秒前
李柯莹完成签到,获得积分10
17秒前
vidi发布了新的文献求助10
18秒前
shishi完成签到,获得积分10
18秒前
YY88687321完成签到 ,获得积分10
18秒前
香蕉觅云应助老木虫采纳,获得10
20秒前
宋泽艺完成签到 ,获得积分10
23秒前
ding应助vidi采纳,获得10
25秒前
晨熙关注了科研通微信公众号
26秒前
啾一口香菜完成签到 ,获得积分10
29秒前
xinanan发布了新的文献求助10
30秒前
roger完成签到,获得积分10
30秒前
xiaohu6311完成签到,获得积分20
31秒前
甜美的初蓝完成签到 ,获得积分10
32秒前
引子完成签到,获得积分10
34秒前
871624521完成签到,获得积分10
34秒前
木木发布了新的文献求助10
36秒前
朱华彪完成签到,获得积分10
36秒前
Dky_安静的初夏完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286