Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer

医学 接收机工作特性 曲线下面积 乳腺癌 磁共振成像 新辅助治疗 曲线下面积 子群分析 核医学 乳房磁振造影 内科学 放射科 肿瘤科 癌症 乳腺摄影术 置信区间 药代动力学
作者
Aaquib Syed,Richard Adam,Thomas Ren,Jin-Yu Lu,Takouhie Maldjian,Timothy Q. Duong
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (1): e0280320-e0280320 被引量:15
标识
DOI:10.1371/journal.pone.0280320
摘要

To predict pathological complete response (pCR) after neoadjuvant chemotherapy using extreme gradient boosting (XGBoost) with MRI and non-imaging data at multiple treatment timepoints.This retrospective study included breast cancer patients (n = 117) who underwent neoadjuvant chemotherapy. Data types used included tumor ADC values, diffusion-weighted and dynamic-contrast-enhanced MRI at three treatment timepoints, and patient demographics and tumor data. GLCM textural analysis was performed on MRI data. An extreme gradient boosting machine learning algorithm was used to predict pCR. Prediction performance was evaluated using the area under the curve (AUC) of the receiver operating curve along with precision and recall.Prediction using texture features of DWI and DCE images at multiple treatment time points (AUC = 0.871; 95% CI: (0.768, 0.974; p<0.001) and (AUC = 0.903 95% CI: 0.854, 0.952; p<0.001) respectively), outperformed that using mean tumor ADC (AUC = 0.850 (95% CI: 0.764, 0.936; p<0.001)). The AUC using all MRI data was 0.933 (95% CI: 0.836, 1.03; p<0.001). The AUC using non-MRI data was 0.919 (95% CI: 0.848, 0.99; p<0.001). The highest AUC of 0.951 (95% CI: 0.909, 0.993; p<0.001) was achieved with all MRI and all non-MRI data at all time points as inputs.Using XGBoost on extracted GLCM features and non-imaging data accurately predicts pCR. This early prediction of response can minimize exposure to toxic chemotherapy, allowing regimen modification mid-treatment and ultimately achieving better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chridy驳回了z3Q应助
刚刚
科研通AI2S应助腼腆的乐安采纳,获得10
1秒前
2秒前
Owen应助宁学者采纳,获得10
2秒前
3秒前
3秒前
rita发布了新的文献求助10
3秒前
希望天下0贩的0应助lakelili采纳,获得10
4秒前
糊涂的芷天完成签到,获得积分10
4秒前
虚幻向秋发布了新的文献求助10
4秒前
5秒前
5秒前
香蕉觅云应助半仙采纳,获得10
6秒前
6秒前
9秒前
9秒前
烂烂发布了新的文献求助10
9秒前
LHL完成签到,获得积分10
9秒前
111111发布了新的文献求助10
10秒前
10秒前
CYAA发布了新的文献求助10
12秒前
guojin发布了新的文献求助10
12秒前
小蘑菇应助lapchin采纳,获得10
12秒前
36456657应助在风之笑采纳,获得10
12秒前
初四发布了新的文献求助10
13秒前
七七完成签到,获得积分10
13秒前
14秒前
duoduo发布了新的文献求助10
16秒前
jiangcai发布了新的文献求助10
17秒前
食杂砸发布了新的文献求助10
18秒前
18秒前
luyuhao3应助hhhhhhhh采纳,获得10
19秒前
19秒前
科研通AI2S应助hhjndjnjk采纳,获得10
21秒前
21秒前
21秒前
21秒前
22秒前
英姑应助rita采纳,获得10
22秒前
英俊的铭应助li采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883