温室气体
碳足迹
焚化
环境科学
生命周期评估
原材料
废物管理
全球变暖潜力
环境工程
生产(经济)
工程类
农业科学
化学
生态学
宏观经济学
经济
生物
有机化学
作者
Wan-Li Lao,Liang Chang
标识
DOI:10.1016/j.jclepro.2023.136064
摘要
China is one of the largest manufacturers, consumers, and traders of wood-based panels (WBPs) globally. The Chinese manufacturing process for WBPs is significantly different from that used in other countries and the greenhouse gas (GHG) footprint assessment of this process has not yet received attention. And a comprehensive evaluation of the effect of different approaches to estimate the delayed emission of biogenic carbon on the GHG footprints of different WBP types is still missing. This study aims to quantify: i) the GHG footprint of WBPs produced in China, and ii) the influence of different methods to assess the delayed emission of biogenic carbon. Cradle-to-gate life cycle models are developed for plywood (PLY), fiberboard (FB), particleboard (PB) and oriented strand boards (OSB). Based on two common end-of-life (EoL) destinations (i.e., incineration and landfill), three approaches to the estimation of the delayed emissions of biogenic carbon in cradle-to-grave assessments are compared. The cradle-to-gate results show that the GHG footprints of PLY, FB, PB and OSB without considering biogenic carbon storage are 538 kg CO2 e/m³, 406 kg CO2 e/m³, 348 kg CO2 e/m³ and 552 kg CO2 e/m³, respectively. For the four types of WBPs, resources extraction stage provides the largest contribution to the GHG footprints (55%–81%), followed by the production process (18%–31%) and raw material transportation (1%–18%). The methodologies used to assess delayed emissions in cradle-to-grave WBP GHG footprint assessments play an important role, especially for incineration scenarios. Finally, emission reduction measures are proposed based on reducing the consumption of adhesives and of energy use in the production process.
科研通智能强力驱动
Strongly Powered by AbleSci AI