对乙酰氨基酚
化学
药理学
肝损伤
体内
抗氧化剂
活性氧
紫檀
谷胱甘肽
生物化学
酶
医学
生物
生物技术
白藜芦醇
作者
Kehong Dong,Mei Zhang,Ying Liu,Xintao Gao,Xiaochen Wu,Xiangqian Li,Chuanlong Guo,Jing Wang
标识
DOI:10.1021/acs.molpharmaceut.2c00881
摘要
Excessive acetaminophen (APAP) induces excess reactive oxygen species (ROS), leading to liver damage. Pterostilbene (PTE) has excellent antioxidant and anti-inflammatory activities, but poor solubility limits its biological activity. In this study, we prepared PTE-loaded Soluplus/poloxamer 188 mixed micelles (PTE-MMs), and the protective mechanism against APAP-induced liver injury was investigated. In vitro results showed that PTE-MMs protected H2O2-induced HepG2 cell proliferation inhibition, ROS accumulation, and mitochondrial membrane potential destruction. Immunofluorescence results indicated that PTE-MMs significantly inhibited H2O2-induced DNA damage and cGAS-STING pathway activation. For in vivo protection studies, PTE-MMs (25 and 50 mg/kg) were administered orally for 5 days, followed by APAP (300 mg/kg). The results showed that APAP significantly induced injury in liver histopathology as well as an increase in serum aspartate aminotransferase and alanine aminotransferase levels. Moreover, the above characteristics of APAP-induced acute liver injury were inhibited by PTE-MMs. In addition, APAP-induced changes in the activities of antioxidant enzymes such as SOD and GSH in liver tissue were also inhibited by PTE-MMs. Immunohistochemical results showed that PTE-MMs inhibited APAP-induced DNA damage and cGAS-STING pathway activation in liver tissues. For in vivo therapeutic effect study, mice were first given APAP (300 mg/kg), followed by oral administration of PTE-MMs (50 mg/kg) for 3 days. The results showed that PTE-MMs exhibited promising therapeutic effects on APAP-induced acute liver injury. In conclusion, our study shows that the Soluplus/poloxamer 188 MM system has the potential to enhance the biological activity of PTE in the protection and therapeutic of liver injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI