计算机科学
可扩展性
透明度(行为)
人口
渡线
数据发布
竞争对手分析
数据挖掘
操作员(生物学)
理论计算机科学
机器学习
出版
计算机安全
生物化学
化学
人口学
管理
抑制因子
数据库
社会学
政治学
转录因子
法学
经济
基因
作者
Yong-Feng Ge,Elisa Bertino,Hua Wang,Jinli Cao,Yanchun Zhang
出处
期刊:ACM Transactions on Knowledge Discovery From Data
[Association for Computing Machinery]
日期:2023-08-07
卷期号:18 (1): 1-23
被引量:15
摘要
Data transparency is beneficial to data participants’ awareness, users’ fairness, and research work’s reproducibility. However, when addressing transparency requirements, we cannot ignore data privacy. This article defines the multi-objective data publishing (MODP) problem, optimizing data privacy and transparency at the same time. Accordingly, we propose a distributed cooperative coevolutionary genetic algorithm (DCCGA) to optimize the MODP problem. In the population of DCCGA, each individual represents an anonymization solution to MODP. Three modules in DCCGA, i.e., grouping module, cooperative coevolutionary module, and evolving module, are proposed for distributed sub-population update and evaluation, improving DCCGA’s optimization performance and parallel efficiency. Moreover, a matrix-based crossover operator and a matrix-based mutation operator are designed to exchange and adjust anonymization information in the individuals efficiently. Experimental results demonstrate that the proposed DCCGA outperforms the competitors with respect to solution accuracy, convergence speed, and scalability. Besides, we verify the effectiveness of all the proposed components in DCCGA.
科研通智能强力驱动
Strongly Powered by AbleSci AI