An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助TOMORROW采纳,获得10
1秒前
科研通AI6.1应助Luu采纳,获得10
1秒前
Merciful完成签到 ,获得积分10
2秒前
TTTHANKS发布了新的文献求助10
3秒前
谦让烤鸡发布了新的文献求助10
3秒前
3秒前
Akim应助修越采纳,获得10
4秒前
shihui完成签到,获得积分10
5秒前
5秒前
5秒前
pangpang发布了新的文献求助10
7秒前
心仔发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
11秒前
an_yujin发布了新的文献求助10
11秒前
甜甜乌冬面完成签到,获得积分10
11秒前
GLY发布了新的文献求助10
11秒前
15秒前
15秒前
zln关闭了zln文献求助
16秒前
17秒前
科研通AI6.1应助Luu采纳,获得10
17秒前
Yuanyuan发布了新的文献求助10
18秒前
舒心的雍应助尔尔采纳,获得10
18秒前
七妈完成签到,获得积分10
18秒前
李健应助yang采纳,获得10
19秒前
19秒前
王啦啦发布了新的文献求助10
19秒前
21秒前
葱葱不吃葱完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
快乐随心完成签到 ,获得积分10
22秒前
平芜发布了新的文献求助10
23秒前
芝士发布了新的文献求助10
23秒前
勤恳纸鹤完成签到,获得积分10
24秒前
25秒前
NNPC完成签到,获得积分10
25秒前
漫迷漫完成签到 ,获得积分10
25秒前
绿小豆发布了新的文献求助10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745664
求助须知:如何正确求助?哪些是违规求助? 5428112
关于积分的说明 15353826
捐赠科研通 4885612
什么是DOI,文献DOI怎么找? 2626862
邀请新用户注册赠送积分活动 1575370
关于科研通互助平台的介绍 1532109