已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
英勇的梨愁完成签到 ,获得积分10
5秒前
6秒前
6秒前
mxq发布了新的文献求助10
6秒前
7秒前
活力广缘完成签到,获得积分10
8秒前
9秒前
宋翰林发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI2S应助iii采纳,获得10
11秒前
suodeheng发布了新的文献求助180
12秒前
14秒前
彳亍完成签到,获得积分10
16秒前
香蕉觅云应助我想睡觉采纳,获得10
16秒前
德玛西亚发布了新的文献求助10
17秒前
17秒前
SH完成签到,获得积分10
18秒前
18秒前
20秒前
传奇3应助春江花月夜采纳,获得10
21秒前
22秒前
22秒前
23秒前
iii发布了新的文献求助10
23秒前
24秒前
五十完成签到 ,获得积分10
25秒前
SS1025861完成签到 ,获得积分10
26秒前
小姚发布了新的文献求助10
27秒前
27秒前
28秒前
29秒前
29秒前
karma0220发布了新的文献求助10
29秒前
zzz发布了新的文献求助10
30秒前
隐形曼青应助Ultraman45采纳,获得20
30秒前
斯文半山完成签到,获得积分20
32秒前
leo发布了新的文献求助10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794