已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈基米德应助科研通管家采纳,获得20
1秒前
Ak完成签到,获得积分0
1秒前
Owen应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
GingerF应助科研通管家采纳,获得50
2秒前
哈基米德应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
哈基米德应助科研通管家采纳,获得20
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助qianqina采纳,获得10
3秒前
感动手链完成签到,获得积分10
5秒前
555完成签到,获得积分10
7秒前
Fxy完成签到 ,获得积分10
8秒前
挚智完成签到 ,获得积分10
10秒前
11秒前
haohaohao完成签到,获得积分10
11秒前
sunyt完成签到,获得积分10
12秒前
情怀应助Yi采纳,获得10
12秒前
浮游应助远方采纳,获得10
14秒前
不可以哦完成签到 ,获得积分10
14秒前
15秒前
rick3455完成签到 ,获得积分10
16秒前
开放的亦竹完成签到,获得积分10
16秒前
执念完成签到 ,获得积分10
17秒前
18秒前
耶耶完成签到,获得积分20
19秒前
Doctor完成签到 ,获得积分10
19秒前
拼搏的寒凝完成签到 ,获得积分10
20秒前
大学生完成签到 ,获得积分10
20秒前
林林发布了新的文献求助10
21秒前
Only1完成签到,获得积分10
22秒前
轻松笙完成签到,获得积分10
23秒前
小张同学完成签到 ,获得积分10
26秒前
DChen完成签到 ,获得积分10
27秒前
嘟嘟雯完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386