亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助蓝色牛马采纳,获得10
1秒前
10秒前
obedVL完成签到,获得积分10
13秒前
histamin完成签到,获得积分10
14秒前
蓝色牛马发布了新的文献求助10
15秒前
orixero应助一见喜采纳,获得10
17秒前
懒大王完成签到 ,获得积分10
19秒前
177完成签到,获得积分20
21秒前
22秒前
一见喜发布了新的文献求助10
28秒前
33秒前
科研通AI2S应助mm采纳,获得10
34秒前
陈砍砍完成签到 ,获得积分10
35秒前
dawnfu完成签到,获得积分10
35秒前
爆米花应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
我是老大应助科研通管家采纳,获得10
36秒前
传奇3应助ylh采纳,获得10
37秒前
45秒前
46秒前
dawnfu发布了新的文献求助10
49秒前
小黑妞完成签到,获得积分10
51秒前
英俊的铭应助王颖超采纳,获得30
52秒前
52秒前
ylh发布了新的文献求助10
53秒前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助ylh采纳,获得10
1分钟前
Akim应助习惯过了头采纳,获得10
1分钟前
王颖超发布了新的文献求助30
1分钟前
BowieHuang应助小黑妞采纳,获得10
1分钟前
1分钟前
司空以蕊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ylh发布了新的文献求助10
1分钟前
勤恳八宝粥完成签到 ,获得积分10
1分钟前
抹茶发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294