清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助10
1秒前
hanlixuan完成签到 ,获得积分10
2秒前
呆呆的猕猴桃完成签到 ,获得积分10
2秒前
19秒前
20秒前
41秒前
53秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
wanci应助john2333采纳,获得10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
1分钟前
Jin完成签到,获得积分10
1分钟前
jin完成签到,获得积分10
1分钟前
1分钟前
aming发布了新的文献求助10
1分钟前
john2333关注了科研通微信公众号
2分钟前
2分钟前
melody完成签到 ,获得积分10
2分钟前
john2333发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
深情安青应助www采纳,获得10
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
bigtree完成签到 ,获得积分10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
开心惜梦完成签到,获得积分10
3分钟前
yan完成签到,获得积分10
3分钟前
3分钟前
华仔应助圈圈采纳,获得10
3分钟前
3分钟前
CC完成签到,获得积分10
3分钟前
CC发布了新的文献求助10
3分钟前
4分钟前
溯溯完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
ccc完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304