An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 古生物学 生态学 生物 程序设计语言 地质学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:: 1-20 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吞金小怪兽完成签到,获得积分10
1秒前
1秒前
不配.应助超帅方盒采纳,获得10
4秒前
4秒前
5秒前
6秒前
6秒前
afera发布了新的文献求助10
7秒前
8秒前
AKYDXS完成签到,获得积分10
8秒前
暮色微凉发布了新的文献求助10
9秒前
9秒前
9秒前
星辰大海应助逗号先生采纳,获得10
9秒前
lu完成签到,获得积分10
10秒前
10秒前
甜美小蕾发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
夏日天空发布了新的文献求助20
13秒前
周凡淇发布了新的文献求助10
14秒前
畅快的鱼完成签到,获得积分10
15秒前
科研通AI2S应助夏青荷采纳,获得10
15秒前
不配.应助嗑瓜子传奇采纳,获得10
17秒前
sunnybei发布了新的文献求助10
17秒前
于特发布了新的文献求助10
18秒前
Moonflower发布了新的文献求助20
20秒前
evergarden完成签到 ,获得积分10
20秒前
20秒前
ggg完成签到 ,获得积分10
20秒前
于特完成签到,获得积分10
23秒前
莫星晨完成签到,获得积分10
24秒前
25秒前
zzj发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7781050
捐赠科研通 2443321
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625345
版权声明 600922