An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
刚刚
元谷雪发布了新的文献求助10
刚刚
哈嘿哈嘿哒完成签到,获得积分10
刚刚
科研汪星人完成签到,获得积分10
刚刚
hugeyoung完成签到,获得积分10
1秒前
张肥肥发布了新的文献求助10
1秒前
Tengami应助鹿鸣鱼跃采纳,获得10
1秒前
1秒前
清新的初夏完成签到,获得积分20
1秒前
今迟小姐完成签到,获得积分10
2秒前
759应助陈c采纳,获得10
3秒前
4秒前
4秒前
4秒前
金皮卡发布了新的文献求助10
4秒前
GuGuGaGaAH发布了新的文献求助10
5秒前
AAA发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
深情冷雪发布了新的文献求助10
5秒前
6秒前
包宇完成签到,获得积分10
6秒前
6秒前
6秒前
降临完成签到,获得积分10
6秒前
Orange应助壮观的可以采纳,获得30
6秒前
君无邪发布了新的文献求助10
7秒前
Owen应助Zeng采纳,获得10
7秒前
Lucas应助xzh采纳,获得10
7秒前
彪壮的金毛完成签到,获得积分10
7秒前
7秒前
酷波er应助单薄枕头采纳,获得10
8秒前
8秒前
舒心乐荷完成签到,获得积分10
9秒前
FashionBoy应助调皮的幻梅采纳,获得10
9秒前
只想摆烂完成签到,获得积分10
9秒前
雨张完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905