An improved change detection method for tacking remote sensing time series trends

算法 计算机科学 系列(地层学) 归一化差异植被指数 数据集 时间序列 残余物 集合(抽象数据类型) 变更检测 遥感 数据挖掘 模式识别(心理学) 人工智能 叶面积指数 机器学习 地质学 生物 古生物学 程序设计语言 生态学
作者
Xing Huo,Kun Zhang,Jing Li,Kun Shao,Guangpeng Cui
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (19-20): 7678-7697 被引量:1
标识
DOI:10.1080/01431161.2023.2249605
摘要

ABSTRACTTo improve the accuracy of detecting changes in remote sensing time series, an improved algorithm based on the combination of the antileakage least-squares spectral analysis (ALLSSA) algorithm and detecting breakpoints and estimating segments in trends (DBEST) algorithm is proposed and applied. The method uses the ALLSSA algorithm to decompose the time series and identify the trend components in the time series. Then, the trend segmentation mechanism of the DBEST algorithm is used to detect the changes in the trend component. In this paper, the improved algorithm is evaluated using a simulated time series data set, a time series data set with multiple change points, and data set based on the moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) remote sensing time series. The results demonstrate that the average detection accuracies of the improved algorithm and DBEST algorithm are 98.4% and 85.2%, respectively, for the simulated time series data set. For the time series data set with multiple change points, the average root mean square errors (RMSEs) of the trend data for the improved and DBEST algorithms are 0.0386 and 0.0331, respectively. The mean normalized residual norms (MNRNs) of the improved and DBEST algorithms are 0.0252 and 0.0351, respectively. Finally, the improved algorithm, DBEST algorithm, and breaks for additive season and trend (BFAST) algorithm are applied to MODIS NDVI data, and their performance with remote sensing data is compared. The improved algorithm has higher detection accuracy and a smaller MNRN, indicating that more information is included in the trend and seasonal components. Therefore, the proposed method is useful for analysing trends in remote sensing time series data.KEYWORDS: Time seriesChange detectionALLSSADBESTNDVI AcknowledgementsThis work was supported by the National Natural Science Foundation of China under Grant 61872407.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China [61872407].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助红豆采纳,获得10
刚刚
儒雅的菠萝完成签到 ,获得积分10
刚刚
刚刚
默默的白桃完成签到,获得积分10
1秒前
狗熊也完成签到,获得积分10
1秒前
Blue发布了新的文献求助10
1秒前
1秒前
强健的飞瑶完成签到,获得积分10
1秒前
GH完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
林小不脏发布了新的文献求助10
3秒前
豆奶发布了新的文献求助10
4秒前
6680668驳回了Owen应助
4秒前
sweety发布了新的文献求助10
4秒前
庸俗发布了新的文献求助10
4秒前
4秒前
酷波er应助Abner采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
慕青应助活力惜寒采纳,获得10
5秒前
6秒前
xr发布了新的文献求助10
6秒前
6秒前
6秒前
123完成签到,获得积分10
6秒前
douzi完成签到,获得积分10
7秒前
爆米花应助呼呼呼采纳,获得10
7秒前
T拐拐发布了新的文献求助10
8秒前
8秒前
玛丽发布了新的文献求助10
9秒前
钟钟钟发布了新的文献求助10
9秒前
会撒娇的定帮完成签到 ,获得积分10
10秒前
mr_zhou发布了新的文献求助10
10秒前
汉堡包应助清新的苑博采纳,获得10
10秒前
姜姜完成签到,获得积分20
11秒前
王昕钥发布了新的文献求助10
11秒前
科研通AI2S应助飞快的寒香采纳,获得10
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406