Missing well-log reconstruction using a sequence self-attention deep-learning framework

计算机科学 人工神经网络 深度学习 稳健性(进化) 缺少数据 数据挖掘 人工智能 钻孔 算法 模式识别(心理学) 机器学习 地质学 生物化学 化学 基因 岩土工程
作者
Lei Lin,Hao Wei,Tiantian Wu,Pengyun Zhang,Zhi Zhong,Chenglong Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): D391-D410 被引量:7
标识
DOI:10.1190/geo2022-0757.1
摘要

Well logging is a critical tool for reservoir evaluation and fluid identification. However, due to borehole conditions, instrument failure, economic constraints, etc., some types of well logs are occasionally missing or unreliable. Existing logging curve reconstruction methods based on empirical formulas and fully connected deep neural networks (FCDNN) can only consider point-to-point mapping relationships. Recurrently structured neural networks can consider a multipoint correlation, but it is difficult to compute in parallel. To take into account the correlation between log sequences and achieve computational parallelism, we develop a novel deep-learning framework for missing well-log reconstruction based on state-of-the-art transformer architecture. The missing well-log transformer (MWLT) uses a self-attention mechanism instead of a circular recursive structure to model the global dependencies of the inputs and outputs. To use different usage requirements, we design the MWLT in three scales: small, base, and large, by adjusting the parameters in the network. A total of 8609 samples from 209 wells in the Sichuan Basin, China, are used for training and validation, and two additional blind wells are used for testing. The data augmentation strategy with random starting points is implemented to increase the robustness of the model. The results show that our proposed MWLT achieves a significant improvement in accuracy over the conventional Gardner’s equation and data-driven approaches such as FCDNN and bidirectional long short-term memory, on the validation data set and blind test wells. The MWLT-large and MWLT-base have lower prediction errors than MWLT-small but require more training time. Two wells in the Songliao Basin, China, are used to evaluate the cross-regional generalized performance of our method. The generalizability test results demonstrate that density logs reconstructed by MWLT remain the best match to the observed data compared with other methods. The parallelizable MWLT automatically learns the global dependence of the parameters of the subsurface reservoir, enabling an efficient missing well-log reconstruction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
含蓄冰蓝发布了新的文献求助30
2秒前
秀丽的大门完成签到,获得积分10
2秒前
xuan发布了新的文献求助10
2秒前
无限思真发布了新的文献求助10
2秒前
CoNiCoNi发布了新的文献求助10
3秒前
ding关注了科研通微信公众号
4秒前
书记发布了新的文献求助10
5秒前
852应助绿灯请通行采纳,获得10
5秒前
酷波er应助HDrinnk采纳,获得10
5秒前
5秒前
6秒前
Serena完成签到,获得积分10
6秒前
6秒前
九九发布了新的文献求助10
6秒前
7秒前
李李发布了新的文献求助10
7秒前
8秒前
gzhatsb完成签到,获得积分10
8秒前
共享精神应助霸气的思柔采纳,获得10
8秒前
9秒前
hh应助科研采纳,获得10
9秒前
CoNiCoNi完成签到,获得积分20
10秒前
cccui完成签到,获得积分10
10秒前
火星上凡霜完成签到,获得积分10
11秒前
11秒前
DrW1111发布了新的文献求助10
11秒前
JamesPei应助书记采纳,获得10
11秒前
huahua完成签到 ,获得积分10
12秒前
12秒前
Stevenchow发布了新的文献求助10
14秒前
yiqi发布了新的文献求助10
14秒前
Goyounjung完成签到,获得积分10
15秒前
浮游应助mimi采纳,获得10
16秒前
16秒前
王震发布了新的文献求助10
16秒前
17秒前
轻松戎发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854