亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Missing well-log reconstruction using a sequence self-attention deep-learning framework

计算机科学 人工神经网络 深度学习 稳健性(进化) 缺少数据 数据挖掘 人工智能 钻孔 算法 模式识别(心理学) 机器学习 地质学 生物化学 化学 基因 岩土工程
作者
Lei Lin,Hao Wei,Tiantian Wu,Pengyun Zhang,Zhi Zhong,Chenglong Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): D391-D410 被引量:7
标识
DOI:10.1190/geo2022-0757.1
摘要

Well logging is a critical tool for reservoir evaluation and fluid identification. However, due to borehole conditions, instrument failure, economic constraints, etc., some types of well logs are occasionally missing or unreliable. Existing logging curve reconstruction methods based on empirical formulas and fully connected deep neural networks (FCDNN) can only consider point-to-point mapping relationships. Recurrently structured neural networks can consider a multipoint correlation, but it is difficult to compute in parallel. To take into account the correlation between log sequences and achieve computational parallelism, we develop a novel deep-learning framework for missing well-log reconstruction based on state-of-the-art transformer architecture. The missing well-log transformer (MWLT) uses a self-attention mechanism instead of a circular recursive structure to model the global dependencies of the inputs and outputs. To use different usage requirements, we design the MWLT in three scales: small, base, and large, by adjusting the parameters in the network. A total of 8609 samples from 209 wells in the Sichuan Basin, China, are used for training and validation, and two additional blind wells are used for testing. The data augmentation strategy with random starting points is implemented to increase the robustness of the model. The results show that our proposed MWLT achieves a significant improvement in accuracy over the conventional Gardner’s equation and data-driven approaches such as FCDNN and bidirectional long short-term memory, on the validation data set and blind test wells. The MWLT-large and MWLT-base have lower prediction errors than MWLT-small but require more training time. Two wells in the Songliao Basin, China, are used to evaluate the cross-regional generalized performance of our method. The generalizability test results demonstrate that density logs reconstructed by MWLT remain the best match to the observed data compared with other methods. The parallelizable MWLT automatically learns the global dependence of the parameters of the subsurface reservoir, enabling an efficient missing well-log reconstruction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
zyz发布了新的文献求助20
12秒前
SDNUDRUG发布了新的文献求助10
22秒前
32秒前
SDNUDRUG完成签到,获得积分10
33秒前
大模型应助隋嫣然采纳,获得10
36秒前
潦草小狗完成签到 ,获得积分10
43秒前
tutu完成签到,获得积分10
47秒前
51秒前
英俊的铭应助zyz采纳,获得10
51秒前
鲁路修完成签到,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
PengDai发布了新的文献求助200
1分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
CodeCraft应助PengDai采纳,获得10
2分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Sunsheng应助娇气的亦云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031219
求助须知:如何正确求助?哪些是违规求助? 4265993
关于积分的说明 13298383
捐赠科研通 4075084
什么是DOI,文献DOI怎么找? 2228849
邀请新用户注册赠送积分活动 1237466
关于科研通互助平台的介绍 1162231