Missing well-log reconstruction using a sequence self-attention deep-learning framework

计算机科学 人工神经网络 深度学习 稳健性(进化) 缺少数据 数据挖掘 人工智能 钻孔 算法 模式识别(心理学) 机器学习 地质学 生物化学 化学 基因 岩土工程
作者
Lei Lin,Hao Wei,Tiantian Wu,Pengyun Zhang,Zhi Zhong,Chenglong Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): D391-D410 被引量:7
标识
DOI:10.1190/geo2022-0757.1
摘要

Well logging is a critical tool for reservoir evaluation and fluid identification. However, due to borehole conditions, instrument failure, economic constraints, etc., some types of well logs are occasionally missing or unreliable. Existing logging curve reconstruction methods based on empirical formulas and fully connected deep neural networks (FCDNN) can only consider point-to-point mapping relationships. Recurrently structured neural networks can consider a multipoint correlation, but it is difficult to compute in parallel. To take into account the correlation between log sequences and achieve computational parallelism, we develop a novel deep-learning framework for missing well-log reconstruction based on state-of-the-art transformer architecture. The missing well-log transformer (MWLT) uses a self-attention mechanism instead of a circular recursive structure to model the global dependencies of the inputs and outputs. To use different usage requirements, we design the MWLT in three scales: small, base, and large, by adjusting the parameters in the network. A total of 8609 samples from 209 wells in the Sichuan Basin, China, are used for training and validation, and two additional blind wells are used for testing. The data augmentation strategy with random starting points is implemented to increase the robustness of the model. The results show that our proposed MWLT achieves a significant improvement in accuracy over the conventional Gardner’s equation and data-driven approaches such as FCDNN and bidirectional long short-term memory, on the validation data set and blind test wells. The MWLT-large and MWLT-base have lower prediction errors than MWLT-small but require more training time. Two wells in the Songliao Basin, China, are used to evaluate the cross-regional generalized performance of our method. The generalizability test results demonstrate that density logs reconstructed by MWLT remain the best match to the observed data compared with other methods. The parallelizable MWLT automatically learns the global dependence of the parameters of the subsurface reservoir, enabling an efficient missing well-log reconstruction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方听云发布了新的文献求助10
刚刚
echo完成签到 ,获得积分10
1秒前
漫曼发布了新的文献求助10
2秒前
3秒前
3秒前
咕咕应助kk采纳,获得20
4秒前
Jasper应助爱科研的小孙孙采纳,获得10
5秒前
xinyuxxx发布了新的文献求助10
5秒前
是咸鱼呀完成签到,获得积分10
6秒前
6秒前
HelenZ完成签到,获得积分10
7秒前
ranta完成签到,获得积分10
8秒前
渐渐完成签到,获得积分10
8秒前
玺月洛离完成签到,获得积分10
8秒前
想睡觉的小笼包完成签到 ,获得积分10
9秒前
9秒前
10秒前
HelenZ发布了新的文献求助10
10秒前
共享精神应助肖肖采纳,获得10
12秒前
13秒前
情怀应助xinyuxxx采纳,获得10
14秒前
14秒前
15秒前
大个应助Unsurpassed采纳,获得10
16秒前
Liquid发布了新的文献求助10
16秒前
l璐w璐l发布了新的文献求助10
16秒前
端庄的涟妖完成签到,获得积分10
18秒前
18秒前
小白菜完成签到,获得积分10
19秒前
江姜酱先生完成签到,获得积分10
19秒前
妮妮完成签到,获得积分10
19秒前
hxw发布了新的文献求助30
20秒前
21秒前
Owen应助Liquid采纳,获得10
22秒前
24秒前
xinyuxxx完成签到,获得积分10
24秒前
田様应助爱科研的小孙孙采纳,获得10
25秒前
sx完成签到,获得积分10
26秒前
lili发布了新的文献求助10
27秒前
993494543发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264