已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Missing well-log reconstruction using a sequence self-attention deep-learning framework

计算机科学 人工神经网络 深度学习 稳健性(进化) 缺少数据 数据挖掘 人工智能 钻孔 算法 模式识别(心理学) 机器学习 地质学 生物化学 化学 基因 岩土工程
作者
Lei Lin,Hao Wei,Tiantian Wu,Pengyun Zhang,Zhi Zhong,Chenglong Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): D391-D410 被引量:7
标识
DOI:10.1190/geo2022-0757.1
摘要

Well logging is a critical tool for reservoir evaluation and fluid identification. However, due to borehole conditions, instrument failure, economic constraints, etc., some types of well logs are occasionally missing or unreliable. Existing logging curve reconstruction methods based on empirical formulas and fully connected deep neural networks (FCDNN) can only consider point-to-point mapping relationships. Recurrently structured neural networks can consider a multipoint correlation, but it is difficult to compute in parallel. To take into account the correlation between log sequences and achieve computational parallelism, we develop a novel deep-learning framework for missing well-log reconstruction based on state-of-the-art transformer architecture. The missing well-log transformer (MWLT) uses a self-attention mechanism instead of a circular recursive structure to model the global dependencies of the inputs and outputs. To use different usage requirements, we design the MWLT in three scales: small, base, and large, by adjusting the parameters in the network. A total of 8609 samples from 209 wells in the Sichuan Basin, China, are used for training and validation, and two additional blind wells are used for testing. The data augmentation strategy with random starting points is implemented to increase the robustness of the model. The results show that our proposed MWLT achieves a significant improvement in accuracy over the conventional Gardner’s equation and data-driven approaches such as FCDNN and bidirectional long short-term memory, on the validation data set and blind test wells. The MWLT-large and MWLT-base have lower prediction errors than MWLT-small but require more training time. Two wells in the Songliao Basin, China, are used to evaluate the cross-regional generalized performance of our method. The generalizability test results demonstrate that density logs reconstructed by MWLT remain the best match to the observed data compared with other methods. The parallelizable MWLT automatically learns the global dependence of the parameters of the subsurface reservoir, enabling an efficient missing well-log reconstruction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要手机完成签到 ,获得积分10
刚刚
GingerF应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
aaa142hehe完成签到 ,获得积分10
4秒前
dahafei完成签到 ,获得积分10
5秒前
所所应助maozhehai29999采纳,获得10
6秒前
liuliu完成签到,获得积分20
7秒前
称心的海蓝完成签到,获得积分10
8秒前
北斗发布了新的文献求助10
8秒前
虚心香彤完成签到,获得积分10
10秒前
10秒前
dream完成签到 ,获得积分10
12秒前
13秒前
王某人完成签到 ,获得积分10
15秒前
Duan完成签到 ,获得积分10
17秒前
大龙完成签到 ,获得积分10
20秒前
直率新柔完成签到 ,获得积分10
23秒前
26秒前
27秒前
31秒前
34秒前
香蕉觅云应助dongdong采纳,获得10
34秒前
两袖清风完成签到 ,获得积分10
36秒前
陶醉紫菜发布了新的文献求助10
36秒前
Hermen发布了新的文献求助10
37秒前
Zero完成签到 ,获得积分10
37秒前
38秒前
LiuXiaocui发布了新的文献求助10
38秒前
39秒前
41秒前
41秒前
难得心亮发布了新的文献求助30
45秒前
45秒前
可爱的函函应助温暖采纳,获得10
48秒前
隐形曼青应助shuhaha采纳,获得10
49秒前
未夕晴完成签到,获得积分10
49秒前
完美世界应助未夕晴采纳,获得10
53秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655