Missing well-log reconstruction using a sequence self-attention deep-learning framework

计算机科学 人工神经网络 深度学习 稳健性(进化) 缺少数据 数据挖掘 人工智能 钻孔 算法 模式识别(心理学) 机器学习 地质学 生物化学 化学 基因 岩土工程
作者
Lei Lin,Hao Wei,Tiantian Wu,Pengyun Zhang,Zhi Zhong,Chenglong Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (6): D391-D410 被引量:7
标识
DOI:10.1190/geo2022-0757.1
摘要

Well logging is a critical tool for reservoir evaluation and fluid identification. However, due to borehole conditions, instrument failure, economic constraints, etc., some types of well logs are occasionally missing or unreliable. Existing logging curve reconstruction methods based on empirical formulas and fully connected deep neural networks (FCDNN) can only consider point-to-point mapping relationships. Recurrently structured neural networks can consider a multipoint correlation, but it is difficult to compute in parallel. To take into account the correlation between log sequences and achieve computational parallelism, we develop a novel deep-learning framework for missing well-log reconstruction based on state-of-the-art transformer architecture. The missing well-log transformer (MWLT) uses a self-attention mechanism instead of a circular recursive structure to model the global dependencies of the inputs and outputs. To use different usage requirements, we design the MWLT in three scales: small, base, and large, by adjusting the parameters in the network. A total of 8609 samples from 209 wells in the Sichuan Basin, China, are used for training and validation, and two additional blind wells are used for testing. The data augmentation strategy with random starting points is implemented to increase the robustness of the model. The results show that our proposed MWLT achieves a significant improvement in accuracy over the conventional Gardner’s equation and data-driven approaches such as FCDNN and bidirectional long short-term memory, on the validation data set and blind test wells. The MWLT-large and MWLT-base have lower prediction errors than MWLT-small but require more training time. Two wells in the Songliao Basin, China, are used to evaluate the cross-regional generalized performance of our method. The generalizability test results demonstrate that density logs reconstructed by MWLT remain the best match to the observed data compared with other methods. The parallelizable MWLT automatically learns the global dependence of the parameters of the subsurface reservoir, enabling an efficient missing well-log reconstruction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111yyy完成签到,获得积分20
1秒前
1秒前
Nolan完成签到,获得积分10
1秒前
星辰大海应助123采纳,获得10
1秒前
鸣笛应助知性的问筠采纳,获得20
1秒前
1秒前
2秒前
2秒前
杨家鹏发布了新的文献求助10
2秒前
24p0完成签到,获得积分20
2秒前
田様应助粒汇0采纳,获得10
3秒前
王嵩嵩发布了新的文献求助10
3秒前
鹏1989完成签到,获得积分10
4秒前
苏梓卿发布了新的文献求助10
5秒前
NSCWYH完成签到,获得积分10
5秒前
努力发AM发布了新的文献求助10
5秒前
123木头人发布了新的文献求助10
6秒前
体贴的语柔完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
庄周发布了新的文献求助10
7秒前
8秒前
大力听芹发布了新的文献求助10
8秒前
muzi发布了新的文献求助10
9秒前
dr1nk完成签到 ,获得积分10
9秒前
万能图书馆应助yuan采纳,获得10
9秒前
Xixi关注了科研通微信公众号
9秒前
Lyd发布了新的文献求助10
9秒前
鲤鱼丹蝶完成签到,获得积分20
10秒前
10秒前
李昀圃发布了新的文献求助10
10秒前
今后应助11采纳,获得10
11秒前
如意果汁发布了新的文献求助10
11秒前
糊涂的灵枫完成签到,获得积分10
12秒前
Owen应助Salut采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
思源应助缥缈早晨采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
小鼠脑外侧隔核的全脑投射研究 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4619685
求助须知:如何正确求助?哪些是违规求助? 4021341
关于积分的说明 12448948
捐赠科研通 3705369
什么是DOI,文献DOI怎么找? 2043425
邀请新用户注册赠送积分活动 1075699
科研通“疑难数据库(出版商)”最低求助积分说明 958935