A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries

阴极 离子半径 材料科学 锂(药物) X射线光电子能谱 容量损失 电池(电) 电解质 离子 兴奋剂 化学工程 化学 光电子学 电极 物理化学 冶金 有机化学 量子力学 医学 功率(物理) 物理 工程类 内分泌学
作者
Zhongjun Zhao,Yiran Sun,Yihao Pan,Jing Liu,Jingkai Zhou,Mei Ma,Xiaozhong Wu,Xiangyan Shen,Jin Zhou,Pengfei Zhou
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:652: 231-239 被引量:11
标识
DOI:10.1016/j.jcis.2023.08.055
摘要

Layered Mn-based cathode (KxMnO2) has attracted wide attention for potassium ion batteries (PIBs) because of its high specific capacity and energy density. However, the structure and capacity of KxMnO2 cathode are constantly degraded during the cycling due to the strong Jahn-Teller effect of Mn3+ and huge ionic radius of K+. In this work, lithium ion and interlayer water were introduced into Mn layer and K layer in order to suppress the Jahn-Teller effect and expand interlayer spacing, respectively, thus obtaining new types of K0.4Mn1-xLixO2·0.33H2O cathode materials. The interlayer spacing of the K0.4MnO2 increased from 6.34 to 6.93 Å after the interlayer water insertion. X-ray photoelectron spectroscopy studies demonstrated that proper lithium doping can effectively control the ratio of Mn3+/Mn4+ and inhibit the Jahn-Teller effect. In-situ X-ray diffraction exhibited that lithium doping can inhibit the irreversible phase transition and improve the structural stability of materials during cycling. As a result, the optimal K0.4Mn0.9Li0.1O2·0.33H2O not only delivered a higher capacity retention of 84.04 % compared to the value of 28.09 % for K0.4MnO2·0.33H2O, but also maintained a greatly enhanced rate capability. This study provides a new opportunity for designing layered manganese-based cathode materials with high performance for PIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
棉花糖完成签到,获得积分10
1秒前
找文献呢发布了新的文献求助10
1秒前
1秒前
进击的PhD应助CUI采纳,获得20
1秒前
2秒前
棒棒的红红完成签到,获得积分10
2秒前
凌辰发布了新的文献求助10
3秒前
3秒前
赘婿应助棉花糖采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
水煮菜发布了新的文献求助10
5秒前
diyanbruker完成签到,获得积分20
5秒前
Ying发布了新的文献求助10
6秒前
25778完成签到,获得积分10
7秒前
小蘑菇应助皓哥无敌帅采纳,获得10
7秒前
PP完成签到,获得积分20
8秒前
8秒前
合适否而非完成签到,获得积分10
9秒前
hugozzy关注了科研通微信公众号
9秒前
我想要番茄完成签到,获得积分10
9秒前
复杂冬灵发布了新的文献求助10
10秒前
今后应助但行好事采纳,获得10
10秒前
板蓝根k完成签到,获得积分10
10秒前
邻街完成签到,获得积分10
11秒前
SciGPT应助认真无极采纳,获得10
11秒前
我是老大应助博士采纳,获得10
12秒前
势不可挡完成签到,获得积分10
12秒前
12秒前
自然安雁发布了新的文献求助10
12秒前
科研通AI6应助xdc采纳,获得10
13秒前
13秒前
情怀应助tebf采纳,获得10
14秒前
小号完成签到 ,获得积分10
14秒前
wanci应助diyanbruker采纳,获得10
14秒前
15秒前
15秒前
Owen应助Ying采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624