MoS2 nanoflowers coupled with ultrafine Ir nanoparticles for efficient acid overall water splitting reaction

催化作用 吸附 化学工程 电解 纳米颗粒 分解水 电解水 材料科学 质子交换膜燃料电池 无机化学 化学 电极 纳米技术 光催化 物理化学 电解质 有机化学 工程类
作者
Chunyan Wang,Lice Yu,Fulin Yang,Ligang Feng
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:87: 144-152 被引量:85
标识
DOI:10.1016/j.jechem.2023.08.017
摘要

Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis. Herein, an efficient bi-functional catalyst of Ir/MoS2 nanoflowers (Ir/MoS2 NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS2 NFs with ultrafine Ir nanoparticles. A more suitable adsorption ability for the H* and *OOH intermediates was revealed, where the Ir sites were proposed as the main active center and MoS2 promoted the charge relocation to electronically modify the interfacial structure. The significant interfacial charge redistribution between the MoS2 NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction. Specifically, the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm−2 for OER and HER, respectively, loading on the glass carbon electrode, with high catalytic kinetics, stability, and catalytic efficiency. A two-electrode system constructed by Ir/MoS2 NFs drove 10 mA cm−2 at a cell voltage of 1.55 V, about 70 mV lower than that of the commercial Pt/C||IrO2 system. In addition, partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER. The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS2 NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS2 NFs. The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的青曼完成签到,获得积分10
刚刚
思源应助淡淡的酸奶采纳,获得10
刚刚
皮皮虾完成签到,获得积分10
刚刚
彩色梦安发布了新的文献求助10
刚刚
隐形曼青应助gaogao采纳,获得10
1秒前
scainiao完成签到,获得积分10
1秒前
yulin关注了科研通微信公众号
1秒前
西湖渔夫完成签到,获得积分10
1秒前
zhh完成签到,获得积分10
1秒前
chen完成签到,获得积分10
1秒前
樂楽发布了新的文献求助10
1秒前
2秒前
无敌阿东完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
飘逸子轩完成签到,获得积分10
3秒前
koreyoshi发布了新的文献求助10
3秒前
3秒前
mysci发布了新的文献求助10
3秒前
思源应助yuyu采纳,获得10
4秒前
ting完成签到,获得积分10
4秒前
4秒前
李爱国应助Luffy采纳,获得10
4秒前
酷炫柔发布了新的文献求助10
4秒前
5秒前
曲意风华完成签到,获得积分10
5秒前
5秒前
怕黑雨竹完成签到,获得积分10
6秒前
年年完成签到,获得积分10
6秒前
lxz关注了科研通微信公众号
6秒前
7秒前
JMrider完成签到,获得积分10
7秒前
忐忑的妙柏完成签到,获得积分10
8秒前
YY发布了新的文献求助10
8秒前
给我好好读书完成签到,获得积分10
8秒前
欣喜若灵发布了新的文献求助10
8秒前
Lucas应助过气的蓝精灵采纳,获得10
8秒前
张玮发布了新的文献求助30
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219