Introducing CNN-LSTM network adaptations to improve remaining useful life prediction of complex systems

预言 水准点(测量) 计算机科学 适应(眼睛) 卷积神经网络 工作(物理) 人工智能 机器学习 人工神经网络 数据挖掘 工程类 大地测量学 机械工程 光学 物理 地理
作者
N.G. Borst,Wim J. C. Verhagen
出处
期刊:Journal of the Royal Aeronautical Society [Cambridge University Press]
卷期号:: 1-11
标识
DOI:10.1017/aer.2023.84
摘要

Abstract Prognostics and Health Management (PHM) models aim to estimate remaining useful life (RUL) of complex systems, enabling lower maintenance costs and increased availability. A substantial body of work considers the development and testing of new models using the NASA C-MAPSS dataset as a benchmark. In recent work, the use of ensemble methods has been prevalent. This paper proposes two adaptations to one of the best-performing ensemble methods, namely the Convolutional Neural Network – Long Short-Term Memory (CNN-LSTM) network developed by Li et al. ( IEEE Access , 2019, 7 , pp 75464–75475)). The first adaptation (adaptable time window, or ATW) increases accuracy of RUL estimates, with performance surpassing that of the state of the art, whereas the second (sub-network learning) does not improve performance. The results give greater insight into further development of innovative methods for prognostics, with future work focusing on translating the ATW approach to real-life industrial datasets and leveraging findings towards practical uptake for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小猪完成签到,获得积分10
刚刚
2秒前
萌面大侠完成签到,获得积分10
2秒前
2秒前
金枪鱼完成签到,获得积分10
3秒前
sssssssssss完成签到,获得积分10
3秒前
mary发布了新的文献求助10
5秒前
研友_VZG7GZ应助hahaha123213123采纳,获得10
5秒前
枕星发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
求求大家了完成签到,获得积分10
8秒前
阳光完成签到,获得积分10
8秒前
Crystal完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
乐乐应助赖道之采纳,获得10
13秒前
13秒前
Sun_Chen完成签到,获得积分10
13秒前
体贴凌柏发布了新的文献求助10
14秒前
成就的笑南完成签到 ,获得积分10
14秒前
15秒前
15秒前
wyw123完成签到,获得积分10
15秒前
求大佬帮助完成签到,获得积分10
15秒前
李健的小迷弟应助zyq采纳,获得10
16秒前
陈隆完成签到,获得积分10
16秒前
哎呀完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
mary完成签到,获得积分10
17秒前
17秒前
朱成豪发布了新的文献求助10
19秒前
deallyxyz应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029