Physics-Enhanced Neural Ordinary Differential Equations: Application to Industrial Chemical Reaction Systems

常微分方程 计算机科学 颂歌 人工神经网络 节点(物理) 动力系统理论 外推法 灵活性(工程) 理论计算机科学 人工智能 微分方程 应用数学 数学 物理 统计 数学分析 量子力学
作者
Farshud Sorourifar,You Peng,Iván Castillo,Linh Bui,Juan M. Venegas,Joel A. Paulson
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (38): 15563-15577 被引量:11
标识
DOI:10.1021/acs.iecr.3c01471
摘要

Ordinary differential equations (ODEs) are extremely important in modeling dynamic systems, such as chemical reaction networks. However, many challenges exist for building ODEs to describe such systems accurately, which often requires careful experimentation and domain expertise. Recent advances for solving so-called inverse kinetic modeling problems have focused on the use of new data-driven methods that account for the physical structure of the governing equations, including physics-informed neural networks (PINNs), sparse identification of nonlinear dynamical systems (SINDy), and neural ODEs (NODEs). This work focuses on the NODE framework due to its ability to straightforwardly account for parameter dependencies, partial state observations, and sparse and nonuniform measurements over time. Specifically, we introduce a framework referred to as "physics-enhanced NODEs" that enables a combination of partially known mechanistic models with universal surrogate approximators, which enables scientific-based learning from limited datasets. We further specialize this framework for kinetic models, introducing r-NODE and k-NODE structures that utilize stoichiometric and reaction rate information, respectively, to improve the learning and extrapolation capabilities of the model in chemical reaction systems. The physics-enhanced NODE framework is tested on multiple case studies including real-world experimental datasets collected on complex multiphase reaction systems. Our results indicate that the type of accuracy of the supplied prior information has a significant impact on the performance of the NODE; however, the flexibility of the framework (combined with computationally efficient training protocols) enables the discovery of ODEs capable of outperforming expert-trained models at a fraction of the cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小满完成签到,获得积分10
2秒前
ohhh完成签到,获得积分10
3秒前
宥沐完成签到,获得积分10
6秒前
沉静的元容完成签到,获得积分20
9秒前
wyj关闭了wyj文献求助
11秒前
小悦悦完成签到 ,获得积分10
12秒前
谨慎长颈鹿完成签到,获得积分10
17秒前
充电宝应助逆旅如行人采纳,获得30
21秒前
呼呼啦啦完成签到,获得积分10
22秒前
23秒前
24秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
Haiverxin应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
rgaerva应助科研通管家采纳,获得20
25秒前
Akim应助科研通管家采纳,获得10
25秒前
25秒前
鄢廷芮完成签到 ,获得积分10
26秒前
27秒前
白蓝发布了新的文献求助10
28秒前
xcs完成签到,获得积分10
30秒前
Lai发布了新的文献求助10
32秒前
小豆子发布了新的文献求助10
34秒前
lhy完成签到,获得积分10
34秒前
pacify完成签到,获得积分10
36秒前
36秒前
36秒前
38秒前
41秒前
Yan发布了新的文献求助10
42秒前
祭天丶易木完成签到,获得积分10
44秒前
朱11发布了新的文献求助10
44秒前
忧虑的代容完成签到,获得积分10
46秒前
Akim应助解绮烟采纳,获得30
46秒前
46秒前
26完成签到,获得积分10
47秒前
星辰大海应助Lai采纳,获得10
48秒前
48秒前
49秒前
zzj完成签到 ,获得积分10
51秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791216
关于积分的说明 7798259
捐赠科研通 2447643
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194