光敏剂
插层(化学)
纳米材料
水溶液
光化学
光动力疗法
光催化
材料科学
化学
催化作用
纳米技术
无机化学
有机化学
作者
Bohua Li,Dandan Chu,Haohao Cui,Zhanrong Li,Zhan Zhou,Chaoliang Tan,Jingguo Li
出处
期刊:SmartMat
[Wiley]
日期:2023-09-13
卷期号:4 (6)
被引量:31
摘要
Abstract Although molybdenum trioxide nanomaterials have been widely explored as nanoagents for biomedical applications against bacteria through photothermal therapy, chemodynamic therapy, and catalytic therapy, their utilization as photosensitizers for photodynamic therapy (PDT) have been rarely reported so far. Herein, we report the activation of MoO 3 nanobelts via aqueous co‐intercalation of Na + and H 2 O into their van der Waals gaps as a near‐infrared Type I photosensitizer for photodynamic periodontitis treatment. The Na + /H 2 O intercalation of MoO 3 nanobelts can shorten its length, generate rich oxygen vacancies, and enlarge its interlayer gaps. Such structural changes thus can induce the color change from white to dark blue with a strong near‐infrared (NIR) absorption. When used as a photosensitizer, the I‐MoO 3− x nanobelts exhibit much higher activities for the generation of superoxide radical (·O 2 − ) under an 808 nm laser irradiation than that of the pristine MoO 3 nanobelts. Therefore, the prepared I‐MoO 3− x nanobelts show a spectral antibacterial activity against Escherichia coli and Saccharomyces aureus , thus yielding a good clinical therapeutic effect on periodontitis. Our study proves that aqueous intercalation can be a simple but powerful strategy to activate layered MoO 3 nanomaterials for high‐performance PDT.
科研通智能强力驱动
Strongly Powered by AbleSci AI