Design of sacrificial network in modified natural rubber leads to strikingly improved mechanical performance with self-healing capability

天然橡胶 材料科学 傅里叶变换红外光谱 聚合物 离子键合 极限抗拉强度 复合材料 弹性体 化学工程 有机化学 化学 离子 工程类
作者
Subhradeep Mandal,Mikhail Malanin,Bholanath Ghanti,Susanta Banerjee,Jun Sawada,Toshio Tada,Gert Heinrich,Sven Wießner,Amit Das
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145838-145838 被引量:10
标识
DOI:10.1016/j.cej.2023.145838
摘要

In this first-of-its-kind report, we present a breakthrough in the field of self-healing rubber for tire applications, aiming to address sustainability concerns and enhance mechanical performance. By leveraging the principles of reversible association of polymer chains with available ionic stickers and the abundant natural resources of natural rubber, we have developed a novel sacrificial network concept that imparts excellent self-healing properties to the natural rubber. In the presence of 1,2-dimethylimidazole, epoxidized natural rubber (ENR) was reacted with various dicarboxylic acids of different chain lengths from two to twelve carbon atoms. It was found that ENR was crosslinked to a considerable extent by this treatment and exhibited remarkable mechanical and dynamic mechanical performance. The long-chain dicarboxylic acid was found to be more effective than its short-chain variant in developing a crosslinked structure. As evidenced by Fourier-transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) analysis, apart from ester and ether linkages, the crosslinked network structure between the rubber chains was found to be primarily attributed to the formation of ionic groups. Through careful material design and optimization, we have achieved a tensile strength of up to 30 MPa with self-healing capacity of the material meeting the stringent requirements of tire applications. The reversible network structure and its stability were supported by temperature scanning-stress relaxation (TSSR) studies, dynamic mechanical analysis, and Kelvin probe force microscopy studies. By utilizing natural rubber as the base material, our approach contributes to sustainability efforts by reducing the dependence on synthetic polymers and promoting the use of renewable resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉发夹发布了新的文献求助10
3秒前
4秒前
maox1aoxin应助科研通管家采纳,获得50
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
shinysparrow应助科研通管家采纳,获得100
6秒前
446应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
9秒前
9秒前
10秒前
10秒前
烛夜黎发布了新的文献求助10
10秒前
husi完成签到,获得积分10
11秒前
lizzzzz发布了新的文献求助10
14秒前
liang发布了新的文献求助10
14秒前
火火火完成签到,获得积分10
14秒前
15秒前
十七发布了新的文献求助10
15秒前
荒谬发布了新的文献求助10
16秒前
轩辕寄风完成签到,获得积分10
18秒前
19秒前
19秒前
吧唧吧唧发布了新的文献求助30
21秒前
pluto应助海盗采纳,获得50
22秒前
husi发布了新的文献求助10
23秒前
lizzzzz完成签到,获得积分10
24秒前
小景毕业发布了新的文献求助10
24秒前
luct发布了新的文献求助10
24秒前
Lucas应助1r1r采纳,获得10
25秒前
OLaLa完成签到,获得积分10
28秒前
29秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325517
求助须知:如何正确求助?哪些是违规求助? 2956172
关于积分的说明 8579434
捐赠科研通 2634123
什么是DOI,文献DOI怎么找? 1441760
科研通“疑难数据库(出版商)”最低求助积分说明 667943
邀请新用户注册赠送积分活动 654731