Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data

碳足迹 北京 温室气体 公共交通 足迹 碳纤维 环境科学 环境工程 运输工程 计算机科学 地理 工程类 生态学 考古 中国 算法 复合数 生物
作者
Wen-Long Shang,Yishui Chen,Qing Yu,Xuewang Song,Yanyan Chen,Xiaolei Ma,Xiqun Chen,Zhijia Tan,Jianling Huang,Washington Ochieng
出处
期刊:Applied Energy [Elsevier]
卷期号:352: 121859-121859 被引量:28
标识
DOI:10.1016/j.apenergy.2023.121859
摘要

The increasing severity of global climate change has made reductions in carbon emissions an urgent global issue. The relative lack of carbon footprint analyses of urban public transportation systems (UPTS) is therefore surprising, given that UPTS is an important component of urban transportation and one that may play a crucial role in carbon emission reduction. This study conducts a spatio-temporal analysis of carbon footprints for UPTS during the COVID-19 pandemic based on smart card data in Beijing. Since the core of carbon footprint calculation is to estimate travellers' trip trajectories and the ridership of urban rail transit (URT) and buses, we construct a novel multi-layer urban rail network model to calculate passenger volume and travellers' trajectories through a traffic assignment model. Furthermore, we utilize the Generalized Additive Model (GAM) to analyse the correlation relationship between the carbon footprints of buses and URT. Additionally, we conduct statistical analysis of the carbon footprint of UPTS. The results of the spatio-temporal analysis of carbon footprints for UPTS show significantly lower carbon emissions during holidays compared to those on working days, and emissions during peak hours contribute approximately half of the total daily UPTS emissions, while there are notable variations in the distribution of the carbon footprint among different districts. Moreover, our analysis reveals a positive correlation between the carbon footprints of buses and URT. The statistical analysis reflects different patterns of carbon footprint distribution on different dates during the pandemic, but the carbon footprint distributions on selected dates all follow a power-law distribution. This study may facilitate the understanding to the impacts of UPTS on the environment during the COVID-19 pandemic, and also provide important guidance and reference for the development of carbon emission reduction strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
会飞的鱼完成签到 ,获得积分10
3秒前
3秒前
xc完成签到,获得积分10
4秒前
xxxksk完成签到 ,获得积分0
5秒前
monster完成签到 ,获得积分10
5秒前
铁甲小杨完成签到,获得积分10
8秒前
。。。完成签到,获得积分10
9秒前
典雅葶完成签到 ,获得积分10
10秒前
淡定碧玉完成签到 ,获得积分10
15秒前
huangqian完成签到,获得积分10
16秒前
含蓄的易蓉完成签到,获得积分20
25秒前
时尚的细菌完成签到,获得积分10
25秒前
义气蚂蚁完成签到,获得积分10
25秒前
称心的语梦完成签到,获得积分10
28秒前
月亮上的猫完成签到,获得积分10
29秒前
可夫司机完成签到 ,获得积分10
32秒前
宁万三完成签到 ,获得积分10
33秒前
asdasd完成签到 ,获得积分10
33秒前
33秒前
小白应助含蓄的易蓉采纳,获得30
34秒前
胖子完成签到,获得积分10
36秒前
jyu完成签到,获得积分10
37秒前
38秒前
whyzz完成签到 ,获得积分10
42秒前
Jocd完成签到,获得积分10
42秒前
十六发布了新的文献求助50
43秒前
zzz完成签到,获得积分10
45秒前
小超人到海底捉虫完成签到,获得积分10
46秒前
bb完成签到,获得积分10
46秒前
小刘小刘完成签到 ,获得积分10
46秒前
小背包完成签到 ,获得积分10
48秒前
大白包子李完成签到,获得积分10
50秒前
muzi完成签到,获得积分10
51秒前
zedhumble发布了新的文献求助10
51秒前
未晞完成签到,获得积分10
51秒前
zhang完成签到 ,获得积分10
51秒前
digger2023完成签到 ,获得积分10
52秒前
ES完成签到 ,获得积分10
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175