Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data

碳足迹 北京 温室气体 公共交通 足迹 碳纤维 环境科学 环境工程 运输工程 计算机科学 地理 工程类 生态学 算法 复合数 考古 中国 生物
作者
Wen-Long Shang,Yishui Chen,Qing Yu,Xuewang Song,Yanyan Chen,Xiaolei Ma,Xiqun Chen,Zhijia Tan,Jianling Huang,Washington Ochieng
出处
期刊:Applied Energy [Elsevier]
卷期号:352: 121859-121859 被引量:28
标识
DOI:10.1016/j.apenergy.2023.121859
摘要

The increasing severity of global climate change has made reductions in carbon emissions an urgent global issue. The relative lack of carbon footprint analyses of urban public transportation systems (UPTS) is therefore surprising, given that UPTS is an important component of urban transportation and one that may play a crucial role in carbon emission reduction. This study conducts a spatio-temporal analysis of carbon footprints for UPTS during the COVID-19 pandemic based on smart card data in Beijing. Since the core of carbon footprint calculation is to estimate travellers' trip trajectories and the ridership of urban rail transit (URT) and buses, we construct a novel multi-layer urban rail network model to calculate passenger volume and travellers' trajectories through a traffic assignment model. Furthermore, we utilize the Generalized Additive Model (GAM) to analyse the correlation relationship between the carbon footprints of buses and URT. Additionally, we conduct statistical analysis of the carbon footprint of UPTS. The results of the spatio-temporal analysis of carbon footprints for UPTS show significantly lower carbon emissions during holidays compared to those on working days, and emissions during peak hours contribute approximately half of the total daily UPTS emissions, while there are notable variations in the distribution of the carbon footprint among different districts. Moreover, our analysis reveals a positive correlation between the carbon footprints of buses and URT. The statistical analysis reflects different patterns of carbon footprint distribution on different dates during the pandemic, but the carbon footprint distributions on selected dates all follow a power-law distribution. This study may facilitate the understanding to the impacts of UPTS on the environment during the COVID-19 pandemic, and also provide important guidance and reference for the development of carbon emission reduction strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医路有你完成签到,获得积分10
刚刚
1秒前
科研通AI5应助Sean采纳,获得10
1秒前
1秒前
超帅连虎完成签到,获得积分10
1秒前
皓月千里发布了新的文献求助10
1秒前
Grayball应助包容的剑采纳,获得10
1秒前
深情安青应助寒冷书竹采纳,获得10
2秒前
wbj0722完成签到,获得积分10
2秒前
JIAO完成签到,获得积分10
2秒前
2秒前
3秒前
852应助HopeStar采纳,获得10
3秒前
圆圆发布了新的文献求助30
4秒前
Orange应助Promise采纳,获得10
4秒前
一直发布了新的文献求助20
4秒前
4秒前
5秒前
乐乐应助JonyiCheng采纳,获得10
5秒前
无聊先知发布了新的文献求助10
5秒前
医路有你发布了新的文献求助10
6秒前
6秒前
6秒前
drizzling发布了新的文献求助10
7秒前
平淡南松完成签到,获得积分10
8秒前
研友_ED5GK完成签到,获得积分0
8秒前
舒适豌豆发布了新的文献求助10
8秒前
9秒前
生动的雨竹完成签到,获得积分10
9秒前
9秒前
啦啦啦完成签到,获得积分20
10秒前
silentJeremy完成签到,获得积分10
10秒前
10秒前
WNL发布了新的文献求助10
10秒前
11秒前
11秒前
玉yu完成签到 ,获得积分10
11秒前
嗯呢完成签到 ,获得积分10
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678