Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data

碳足迹 北京 温室气体 公共交通 足迹 碳纤维 环境科学 环境工程 运输工程 计算机科学 地理 工程类 生态学 算法 复合数 考古 中国 生物
作者
Wen-Long Shang,Yishui Chen,Qing Yu,Xuewang Song,Yanyan Chen,Xiaolei Ma,Xiqun Chen,Zhijia Tan,Jianling Huang,Washington Ochieng
出处
期刊:Applied Energy [Elsevier]
卷期号:352: 121859-121859 被引量:28
标识
DOI:10.1016/j.apenergy.2023.121859
摘要

The increasing severity of global climate change has made reductions in carbon emissions an urgent global issue. The relative lack of carbon footprint analyses of urban public transportation systems (UPTS) is therefore surprising, given that UPTS is an important component of urban transportation and one that may play a crucial role in carbon emission reduction. This study conducts a spatio-temporal analysis of carbon footprints for UPTS during the COVID-19 pandemic based on smart card data in Beijing. Since the core of carbon footprint calculation is to estimate travellers' trip trajectories and the ridership of urban rail transit (URT) and buses, we construct a novel multi-layer urban rail network model to calculate passenger volume and travellers' trajectories through a traffic assignment model. Furthermore, we utilize the Generalized Additive Model (GAM) to analyse the correlation relationship between the carbon footprints of buses and URT. Additionally, we conduct statistical analysis of the carbon footprint of UPTS. The results of the spatio-temporal analysis of carbon footprints for UPTS show significantly lower carbon emissions during holidays compared to those on working days, and emissions during peak hours contribute approximately half of the total daily UPTS emissions, while there are notable variations in the distribution of the carbon footprint among different districts. Moreover, our analysis reveals a positive correlation between the carbon footprints of buses and URT. The statistical analysis reflects different patterns of carbon footprint distribution on different dates during the pandemic, but the carbon footprint distributions on selected dates all follow a power-law distribution. This study may facilitate the understanding to the impacts of UPTS on the environment during the COVID-19 pandemic, and also provide important guidance and reference for the development of carbon emission reduction strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助年轻就要气盛采纳,获得10
1秒前
violet完成签到,获得积分20
2秒前
充电宝应助健忘的雨安采纳,获得10
4秒前
dfggg发布了新的文献求助10
4秒前
饱满的问丝完成签到,获得积分10
5秒前
6秒前
大水完成签到 ,获得积分10
7秒前
7秒前
Akira完成签到,获得积分20
8秒前
隐形曼青应助是ok耶采纳,获得10
9秒前
10秒前
10秒前
11111发布了新的文献求助20
11秒前
大水发布了新的文献求助10
13秒前
13秒前
小蘑菇应助保持科研热情采纳,获得10
13秒前
所所应助蓦然采纳,获得10
14秒前
14秒前
爱科研的小蜗啊完成签到,获得积分10
15秒前
从容梦山发布了新的文献求助10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
luo完成签到,获得积分10
18秒前
19秒前
HQQ完成签到,获得积分20
19秒前
Ava应助夏洛采纳,获得10
20秒前
小二郎应助violet采纳,获得10
20秒前
乐观的灭绝完成签到,获得积分10
21秒前
文艺大白菜完成签到,获得积分10
21秒前
难过的谷芹应助无为采纳,获得10
21秒前
情怀应助Ljh采纳,获得10
22秒前
23秒前
23秒前
23秒前
赘婿应助秋qiu采纳,获得10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848