Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data

碳足迹 北京 温室气体 公共交通 足迹 碳纤维 环境科学 环境工程 运输工程 计算机科学 地理 工程类 生态学 算法 复合数 考古 中国 生物
作者
Wen-Long Shang,Yishui Chen,Qing Yu,Xuewang Song,Yanyan Chen,Xiaolei Ma,Xiqun Chen,Zhijia Tan,Jianling Huang,Washington Ochieng
出处
期刊:Applied Energy [Elsevier]
卷期号:352: 121859-121859 被引量:28
标识
DOI:10.1016/j.apenergy.2023.121859
摘要

The increasing severity of global climate change has made reductions in carbon emissions an urgent global issue. The relative lack of carbon footprint analyses of urban public transportation systems (UPTS) is therefore surprising, given that UPTS is an important component of urban transportation and one that may play a crucial role in carbon emission reduction. This study conducts a spatio-temporal analysis of carbon footprints for UPTS during the COVID-19 pandemic based on smart card data in Beijing. Since the core of carbon footprint calculation is to estimate travellers' trip trajectories and the ridership of urban rail transit (URT) and buses, we construct a novel multi-layer urban rail network model to calculate passenger volume and travellers' trajectories through a traffic assignment model. Furthermore, we utilize the Generalized Additive Model (GAM) to analyse the correlation relationship between the carbon footprints of buses and URT. Additionally, we conduct statistical analysis of the carbon footprint of UPTS. The results of the spatio-temporal analysis of carbon footprints for UPTS show significantly lower carbon emissions during holidays compared to those on working days, and emissions during peak hours contribute approximately half of the total daily UPTS emissions, while there are notable variations in the distribution of the carbon footprint among different districts. Moreover, our analysis reveals a positive correlation between the carbon footprints of buses and URT. The statistical analysis reflects different patterns of carbon footprint distribution on different dates during the pandemic, but the carbon footprint distributions on selected dates all follow a power-law distribution. This study may facilitate the understanding to the impacts of UPTS on the environment during the COVID-19 pandemic, and also provide important guidance and reference for the development of carbon emission reduction strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iris完成签到,获得积分10
刚刚
等等有力气完成签到,获得积分10
1秒前
1秒前
兜兜发布了新的文献求助10
1秒前
Yuuuan完成签到,获得积分10
1秒前
刘家成发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
aldeheby应助闷声发采纳,获得10
4秒前
ljy1111发布了新的文献求助10
4秒前
4秒前
4秒前
泅渡完成签到,获得积分20
5秒前
vigor完成签到 ,获得积分10
5秒前
5秒前
6秒前
逗逗发布了新的文献求助10
6秒前
orixero应助Iris采纳,获得10
6秒前
6秒前
鹅鹅完成签到 ,获得积分10
6秒前
hard完成签到,获得积分10
7秒前
CocoGabrielle完成签到,获得积分10
7秒前
7秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
8秒前
ABC的FGH发布了新的文献求助10
8秒前
8秒前
思源应助韩妙采纳,获得10
8秒前
研友_8yN60L完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
子晏发布了新的文献求助10
10秒前
wuyoucaoxin完成签到,获得积分10
11秒前
直率初露发布了新的文献求助10
11秒前
yc发布了新的文献求助10
12秒前
科研通AI2S应助lidd采纳,获得10
12秒前
fff完成签到,获得积分10
12秒前
平淡惋清发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342