亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data

碳足迹 北京 温室气体 公共交通 足迹 碳纤维 环境科学 环境工程 运输工程 计算机科学 地理 工程类 生态学 算法 复合数 考古 中国 生物
作者
Wen-Long Shang,Yishui Chen,Qing Yu,Xuewang Song,Yanyan Chen,Xiaolei Ma,Xiqun Chen,Zhijia Tan,Jianling Huang,Washington Ochieng
出处
期刊:Applied Energy [Elsevier BV]
卷期号:352: 121859-121859 被引量:28
标识
DOI:10.1016/j.apenergy.2023.121859
摘要

The increasing severity of global climate change has made reductions in carbon emissions an urgent global issue. The relative lack of carbon footprint analyses of urban public transportation systems (UPTS) is therefore surprising, given that UPTS is an important component of urban transportation and one that may play a crucial role in carbon emission reduction. This study conducts a spatio-temporal analysis of carbon footprints for UPTS during the COVID-19 pandemic based on smart card data in Beijing. Since the core of carbon footprint calculation is to estimate travellers' trip trajectories and the ridership of urban rail transit (URT) and buses, we construct a novel multi-layer urban rail network model to calculate passenger volume and travellers' trajectories through a traffic assignment model. Furthermore, we utilize the Generalized Additive Model (GAM) to analyse the correlation relationship between the carbon footprints of buses and URT. Additionally, we conduct statistical analysis of the carbon footprint of UPTS. The results of the spatio-temporal analysis of carbon footprints for UPTS show significantly lower carbon emissions during holidays compared to those on working days, and emissions during peak hours contribute approximately half of the total daily UPTS emissions, while there are notable variations in the distribution of the carbon footprint among different districts. Moreover, our analysis reveals a positive correlation between the carbon footprints of buses and URT. The statistical analysis reflects different patterns of carbon footprint distribution on different dates during the pandemic, but the carbon footprint distributions on selected dates all follow a power-law distribution. This study may facilitate the understanding to the impacts of UPTS on the environment during the COVID-19 pandemic, and also provide important guidance and reference for the development of carbon emission reduction strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
39秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
929关闭了929文献求助
1分钟前
1分钟前
卑微学术人完成签到 ,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
李东东完成签到 ,获得积分10
4分钟前
喜悦幻灵完成签到,获得积分10
5分钟前
欧皇发布了新的文献求助10
5分钟前
朱文韬发布了新的文献求助10
6分钟前
朱文韬发布了新的文献求助10
6分钟前
nano完成签到 ,获得积分10
6分钟前
朱文韬发布了新的文献求助10
6分钟前
朱文韬发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬完成签到,获得积分10
7分钟前
929完成签到,获得积分10
7分钟前
929发布了新的文献求助10
8分钟前
胖哥发布了新的文献求助10
8分钟前
Aaaaa发布了新的文献求助10
8分钟前
和气生财君完成签到 ,获得积分10
8分钟前
ZXneuro完成签到,获得积分10
9分钟前
香蕉觅云应助科研通管家采纳,获得10
9分钟前
9分钟前
称心芷巧发布了新的文献求助50
9分钟前
9分钟前
9分钟前
心随以动完成签到 ,获得积分10
10分钟前
修辛完成签到 ,获得积分10
10分钟前
科目三应助符聪采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214