Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system

填充床 热能储存 材料科学 传热 储能 强化传热 热的 热传导 复合材料 化学工程 机械 热力学 传热系数 工程类 物理 功率(物理)
作者
Haichen Yao,Xianglei Liu,Jia Li,Qingyang Luo,Yang Tian,Yimin Xuan
出处
期刊:Energy [Elsevier]
卷期号:284: 128563-128563 被引量:6
标识
DOI:10.1016/j.energy.2023.128563
摘要

Packed-bed thermal energy storage (PBTES) systems utilizing phase change capsules have found extensive applications in thermal energy harvesting and management to alleviate energy supply-demand imbalances. Nevertheless, the sluggish thermal charging rate of phase change materials (PCMs) capsules remains a significant impediment to the rapid advancement of PBTES. Here, bionic PCMs capsules are proposed by mimicking the internal and external structure of chloroplast-granum. The heat transfer and flow characteristics of the bionic PCMs capsules in the packed-bed are analyzed by experiments and numerical simulations. The results illustrate that the chloroplast-fin type PCMs capsule exhibits significantly faster heat storage compared to the sphere type PCMs capsule. This improvement is attributed to the bionic folded shape and inner membrane structure, which generate multiple local vortices to enhance heat convection, and shorten the heat transfer distance between the capsule wall and center PCMs to facilitate heat conduction. The PCMs capsules are further filled into the packed-bed in a staggered arrangement, resulting in increased heat transfer area and enhanced disturbance flow as compared to an aligned arrangement. Consequently, the melting time of the packed-bed filled with chloroplast-fin type capsules is reduced by 33.2%, meanwhile the average exergy storage rate and exergy efficiency are enhanced by 48.4% and 8.3%, respectively, compared to the packed-bed filled with sphere type capsules. This research offers a novel approach for designing high-performance PBTES system utilizing bionic capsules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
赘婿应助傲娇黄豆采纳,获得10
3秒前
3秒前
LegendThree完成签到,获得积分10
4秒前
在水一方应助小亮哈哈采纳,获得10
5秒前
善良的冰绿完成签到,获得积分10
6秒前
8秒前
glaciersu完成签到,获得积分10
9秒前
franklin_fsz完成签到,获得积分0
9秒前
9秒前
科研通AI6应助笨笨的映阳采纳,获得10
10秒前
lllll1243完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得30
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
欢呼冰蓝发布了新的文献求助10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
HOAN应助科研通管家采纳,获得30
13秒前
归尘应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733316
求助须知:如何正确求助?哪些是违规求助? 5348056
关于积分的说明 15323627
捐赠科研通 4878442
什么是DOI,文献DOI怎么找? 2621232
邀请新用户注册赠送积分活动 1570332
关于科研通互助平台的介绍 1527252