Modified Robust Meta-Analytic-Predictive Priors for Incorporating Historical Controls in Clinical Trials

先验概率 统计 荟萃分析 医学 临床试验 贝叶斯概率 计量经济学 数学 内科学
作者
Qiang Zhao,Haijun Ma
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 241-247
标识
DOI:10.1080/19466315.2023.2241405
摘要

AbstractIncorporating historical information in clinical trials has been of much interest recently because of its potential to reduce the size and cost of clinical trials. Data-conflict is one of the biggest challenges in incorporating historical information. In order to address the conflict between historical data and current data, several methods have been proposed including the robust meta-analytic-predictive (rMAP) prior method. In this article, we propose to modify the rMAP prior method by using an empirical Bayes approach to estimate the weights for the two components of the rMAP prior. Via numerical calculations, we show that this modification to the rMAP method improves its performance regarding multiple key metrics.KEYWORDS: Clinical trialsDynamic borrowingEmpirical bayesHistorical controlMixture distribution Supplementary MaterialsS1. Weight parameter(s) in the posterior distribution given a mixture of Beta prior distributions.S2. Variance of a parameter regarding to its posterior distribution given a mixture prior distribution.AcknowledgmentsThe authors would like to thank the reviewers for their valuable comments which have helped improve this manuscript.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Dreamable采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
寻道图强应助科研通管家采纳,获得50
3秒前
ding应助科研通管家采纳,获得10
3秒前
Verity应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
吼吼应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
Junning应助科研通管家采纳,获得100
4秒前
w1kend发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
ssuoi完成签到,获得积分10
4秒前
思源应助luo采纳,获得10
4秒前
佳雯发布了新的文献求助10
4秒前
slz发布了新的文献求助10
5秒前
十二码前的沉思完成签到,获得积分10
5秒前
7秒前
闫素肃发布了新的文献求助10
7秒前
Nofear发布了新的文献求助10
8秒前
10秒前
徐新雨发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779