Modified Robust Meta-Analytic-Predictive Priors for Incorporating Historical Controls in Clinical Trials

先验概率 统计 荟萃分析 医学 临床试验 贝叶斯概率 计量经济学 数学 内科学
作者
Qiang Zhao,Haijun Ma
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 241-247
标识
DOI:10.1080/19466315.2023.2241405
摘要

AbstractIncorporating historical information in clinical trials has been of much interest recently because of its potential to reduce the size and cost of clinical trials. Data-conflict is one of the biggest challenges in incorporating historical information. In order to address the conflict between historical data and current data, several methods have been proposed including the robust meta-analytic-predictive (rMAP) prior method. In this article, we propose to modify the rMAP prior method by using an empirical Bayes approach to estimate the weights for the two components of the rMAP prior. Via numerical calculations, we show that this modification to the rMAP method improves its performance regarding multiple key metrics.KEYWORDS: Clinical trialsDynamic borrowingEmpirical bayesHistorical controlMixture distribution Supplementary MaterialsS1. Weight parameter(s) in the posterior distribution given a mixture of Beta prior distributions.S2. Variance of a parameter regarding to its posterior distribution given a mixture prior distribution.AcknowledgmentsThe authors would like to thank the reviewers for their valuable comments which have helped improve this manuscript.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyancui完成签到,获得积分10
1秒前
小蘑菇应助玛卡巴卡采纳,获得10
1秒前
1秒前
RamonMi完成签到,获得积分10
1秒前
田所浩二完成签到 ,获得积分10
3秒前
3秒前
阔叶材完成签到,获得积分10
3秒前
3秒前
3秒前
Jasper应助加菲丰丰采纳,获得10
3秒前
3秒前
不安溪灵完成签到,获得积分10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
风灵无畏完成签到,获得积分10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
yfn应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
阳光新筠应助科研通管家采纳,获得30
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
stardust314应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得30
5秒前
Akim应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
123456应助科研通管家采纳,获得30
5秒前
Ky_Mac应助科研通管家采纳,获得30
5秒前
orixero应助绾舟采纳,获得10
5秒前
阳光新筠应助科研通管家采纳,获得30
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146