Label-Free Nuclei Segmentation Using Intra-Image Self Similarity

计算机科学 人工智能 分割 模式识别(心理学) 杠杆(统计) 图像分割 像素 尺度空间分割 水准点(测量) 计算机视觉 深度学习 大地测量学 地理
作者
Long Chen,Li Han,S. Kevin Zhou
出处
期刊:Lecture Notes in Computer Science 卷期号:: 673-682
标识
DOI:10.1007/978-3-031-43987-2_65
摘要

In computational pathology, nuclei segmentation from histology images is a fundamental task. While deep learning based nuclei segmentation methods yield excellent results, they rely on a large amount of annotated images; however, annotating nuclei from histology images is tedious and time-consuming. To get rid of labeling burden completely, we propose a label-free approach for nuclei segmentation, motivated from one pronounced yet omitted property that characterizes histology images and nuclei: intra-image self similarity (IISS), that is, within an image, nuclei are similar in their shapes and appearances. First, we leverage traditional machine learning and image processing techniques to generate a pseudo segmentation map, whose connected components form candidate nuclei, both positive or negative. In particular, it is common that adjacent nuclei are merged into one candidate due to imperfect staining and imaging conditions, which violate the IISS property. Then, we filter the candidates based on a custom-designed index that roughly measures if a candidate contains multiple nuclei. The remaining candidates are used as pseudo labels, which we use to train a U-Net to discover the hierarchical features distinguish nuclei pixels from background. Finally, we apply the learned U-Net to produce final nuclei segmentation. We validate the proposed method on the public dataset MoNuSeg. Experimental results demonstrate the effectiveness of our design and, to the best of our knowledge, it achieves the state-of-the-art performances of label-free segmentation on the benchmark MoNuSeg dataset with a mean Dice score of 79.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小南孩完成签到,获得积分10
刚刚
刚刚
1秒前
研友_VZG7GZ应助keyancui采纳,获得10
1秒前
康康完成签到 ,获得积分10
2秒前
英姑应助毕业就好采纳,获得10
2秒前
虚心的迎荷完成签到,获得积分10
2秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
2秒前
2秒前
祝雲完成签到,获得积分10
2秒前
新的心跳发布了新的文献求助10
2秒前
壹拾柒完成签到,获得积分10
3秒前
3秒前
3秒前
mimi发布了新的文献求助10
3秒前
呆呆完成签到,获得积分10
4秒前
blebui应助姜茶采纳,获得10
4秒前
幼稚园小新完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
5秒前
snowball完成签到,获得积分10
5秒前
6秒前
duoduozs发布了新的文献求助10
6秒前
velpro完成签到,获得积分10
6秒前
qqqq完成签到,获得积分10
6秒前
7秒前
7秒前
溪风完成签到,获得积分10
7秒前
ting发布了新的文献求助10
8秒前
9秒前
Xxxnnian发布了新的文献求助30
9秒前
听风暖完成签到 ,获得积分10
10秒前
li发布了新的文献求助10
10秒前
赘婿应助伊布采纳,获得10
10秒前
gaga完成签到,获得积分10
10秒前
小蘑菇应助reck采纳,获得10
11秒前
清风荷影完成签到 ,获得积分10
11秒前
酷波er应助动如脱兔采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672