Label-Free Nuclei Segmentation Using Intra-Image Self Similarity

计算机科学 人工智能 分割 模式识别(心理学) 杠杆(统计) 图像分割 像素 尺度空间分割 水准点(测量) 计算机视觉 深度学习 大地测量学 地理
作者
Long Chen,Li Han,S. Kevin Zhou
出处
期刊:Lecture Notes in Computer Science 卷期号:: 673-682
标识
DOI:10.1007/978-3-031-43987-2_65
摘要

In computational pathology, nuclei segmentation from histology images is a fundamental task. While deep learning based nuclei segmentation methods yield excellent results, they rely on a large amount of annotated images; however, annotating nuclei from histology images is tedious and time-consuming. To get rid of labeling burden completely, we propose a label-free approach for nuclei segmentation, motivated from one pronounced yet omitted property that characterizes histology images and nuclei: intra-image self similarity (IISS), that is, within an image, nuclei are similar in their shapes and appearances. First, we leverage traditional machine learning and image processing techniques to generate a pseudo segmentation map, whose connected components form candidate nuclei, both positive or negative. In particular, it is common that adjacent nuclei are merged into one candidate due to imperfect staining and imaging conditions, which violate the IISS property. Then, we filter the candidates based on a custom-designed index that roughly measures if a candidate contains multiple nuclei. The remaining candidates are used as pseudo labels, which we use to train a U-Net to discover the hierarchical features distinguish nuclei pixels from background. Finally, we apply the learned U-Net to produce final nuclei segmentation. We validate the proposed method on the public dataset MoNuSeg. Experimental results demonstrate the effectiveness of our design and, to the best of our knowledge, it achieves the state-of-the-art performances of label-free segmentation on the benchmark MoNuSeg dataset with a mean Dice score of 79.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sk4ajd发布了新的文献求助100
刚刚
刚刚
我不吃葱发布了新的文献求助10
1秒前
gwt完成签到,获得积分10
3秒前
LI369258发布了新的文献求助10
3秒前
SJY完成签到,获得积分10
3秒前
Hu发布了新的文献求助30
4秒前
shirai20001发布了新的文献求助10
5秒前
小二郎应助我不吃葱采纳,获得10
6秒前
皮崇知发布了新的文献求助10
6秒前
小绵羊完成签到 ,获得积分10
7秒前
半岛铁盒完成签到,获得积分10
8秒前
无花果应助聪明的元彤采纳,获得10
8秒前
不如无言完成签到,获得积分10
8秒前
可爱的函函应助孙淼采纳,获得10
10秒前
11秒前
天真的不尤完成签到 ,获得积分10
11秒前
英姑应助李哈哈采纳,获得10
14秒前
14秒前
完美世界应助云星天际采纳,获得10
16秒前
16秒前
17秒前
17秒前
lululala发布了新的文献求助10
17秒前
思维隋发布了新的文献求助10
17秒前
shao应助wbh采纳,获得20
18秒前
shao应助wbh采纳,获得20
18秒前
18秒前
20秒前
佟彦成发布了新的文献求助10
21秒前
ED应助11111111采纳,获得10
21秒前
22秒前
hrdcrhf发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
25秒前
林布林发布了新的文献求助10
25秒前
25秒前
iNk应助3080采纳,获得20
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629