Intelligent prediction model of mechanical properties of ultrathin niobium strips based on XGBoost ensemble learning algorithm

条状物 微观结构 均方误差 材料科学 平均绝对百分比误差 算法 极限抗拉强度 均方根 标准差 试验装置 计算机科学 人工智能 数学 复合材料 冶金 统计 物理 量子力学
作者
Zhenhua Wang,Yunfei Liu,Tao Wang,Jianguo Wang,Yuan Ming Liu,Qing Xue Huang
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:231: 112579-112579 被引量:15
标识
DOI:10.1016/j.commatsci.2023.112579
摘要

Ultrathin niobium strips with different thicknesses are prepared by an accumulative rolling process. The tensile test of the ultrathin niobium strips is carried out, and the microstructure of each niobium strip is characterized by electron backscattered diffraction (EBSD). The process parameters, mechanical properties and microstructure characterization data of rolled ultrathin niobium strips with different thicknesses are collected, analyzed and sorted. A data-driven intelligent prediction model for the mechanical properties of ultrathin niobium strips is established by deeply integrating the mechanical properties of ultrathin niobium strips with the microstructure evolution mechanism and combining the integrated data with the XGBoost ensemble learning algorithm. The optimal parameters of the XGBoost model are determined by a grid search and used for mechanical performance prediction. The overall generalization performance of the model is evaluated by the coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). To reflect the advancement of the proposed model, the prediction results of this model are compared with those of the random forest (RF), multi-layer perceptron (MLP) and gradient boosting decision tree (GBDT) prediction model. The research results show that, on the test set, the R2 in terms of the tensile strength and yield strength predicted values based on the XGBoost algorithm were higher than those of other models, reaching 0.944 and 0.964, respectively. The three error indicators corresponding to the XGBoost model were also at the lowest level. This means that the model based on the XGBoost algorithm has the optimal generalization performance and can thus realize the accurate prediction of the mechanical properties of ultrathin niobium strips. This research provides a new method and idea for the optimal design of rolling process and the prediction of their mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助呆萌的凡柔采纳,获得10
刚刚
Lucas应助Arui采纳,获得10
1秒前
2秒前
afeiwoo完成签到,获得积分10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
鸣笛应助科研通管家采纳,获得10
3秒前
鸣笛应助科研通管家采纳,获得10
3秒前
3秒前
第一步完成签到 ,获得积分10
4秒前
制冷剂完成签到 ,获得积分10
6秒前
哈哈哈哈完成签到 ,获得积分10
6秒前
啦啦啦发布了新的文献求助10
7秒前
渡劫完成签到,获得积分10
7秒前
Jeffrey完成签到,获得积分10
8秒前
8秒前
研友_ZGAWYL完成签到,获得积分10
8秒前
年少完成签到,获得积分10
8秒前
不停疯狂完成签到 ,获得积分0
10秒前
乐多完成签到,获得积分20
11秒前
郝老头完成签到,获得积分10
11秒前
炒鸡小将发布了新的文献求助10
11秒前
好好完成签到,获得积分10
12秒前
555完成签到,获得积分10
13秒前
13秒前
keke发布了新的文献求助10
14秒前
欧皇发布了新的文献求助30
15秒前
研研研完成签到,获得积分10
16秒前
hzwyyds应助谷粱诗云采纳,获得10
18秒前
18秒前
烟花应助lsy采纳,获得10
19秒前
忧心的若云完成签到,获得积分10
20秒前
李雯完成签到,获得积分10
22秒前
小瓶盖完成签到 ,获得积分10
22秒前
美人鱼战士完成签到 ,获得积分10
22秒前
张一完成签到,获得积分10
23秒前
24秒前
等我吃胖完成签到,获得积分10
24秒前
24秒前
二马三乡完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470