Intelligent prediction model of mechanical properties of ultrathin niobium strips based on XGBoost ensemble learning algorithm

条状物 微观结构 均方误差 材料科学 平均绝对百分比误差 算法 极限抗拉强度 均方根 标准差 试验装置 计算机科学 人工智能 数学 复合材料 冶金 统计 物理 量子力学
作者
Zhenhua Wang,Yunfei Liu,Tao Wang,Jianguo Wang,Yuan Ming Liu,Qing Xue Huang
出处
期刊:Computational Materials Science [Elsevier]
卷期号:231: 112579-112579 被引量:15
标识
DOI:10.1016/j.commatsci.2023.112579
摘要

Ultrathin niobium strips with different thicknesses are prepared by an accumulative rolling process. The tensile test of the ultrathin niobium strips is carried out, and the microstructure of each niobium strip is characterized by electron backscattered diffraction (EBSD). The process parameters, mechanical properties and microstructure characterization data of rolled ultrathin niobium strips with different thicknesses are collected, analyzed and sorted. A data-driven intelligent prediction model for the mechanical properties of ultrathin niobium strips is established by deeply integrating the mechanical properties of ultrathin niobium strips with the microstructure evolution mechanism and combining the integrated data with the XGBoost ensemble learning algorithm. The optimal parameters of the XGBoost model are determined by a grid search and used for mechanical performance prediction. The overall generalization performance of the model is evaluated by the coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). To reflect the advancement of the proposed model, the prediction results of this model are compared with those of the random forest (RF), multi-layer perceptron (MLP) and gradient boosting decision tree (GBDT) prediction model. The research results show that, on the test set, the R2 in terms of the tensile strength and yield strength predicted values based on the XGBoost algorithm were higher than those of other models, reaching 0.944 and 0.964, respectively. The three error indicators corresponding to the XGBoost model were also at the lowest level. This means that the model based on the XGBoost algorithm has the optimal generalization performance and can thus realize the accurate prediction of the mechanical properties of ultrathin niobium strips. This research provides a new method and idea for the optimal design of rolling process and the prediction of their mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
留胡子的霖应助修路娃采纳,获得30
1秒前
3秒前
Bismarck发布了新的文献求助10
3秒前
留胡子的霖应助雯雯采纳,获得10
4秒前
6秒前
刚刚好完成签到 ,获得积分10
7秒前
Wu发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
生动的若之完成签到 ,获得积分10
13秒前
文静紫霜完成签到 ,获得积分10
13秒前
14秒前
李朝富完成签到,获得积分20
16秒前
斯文败类应助小丸子采纳,获得10
17秒前
李朝富发布了新的文献求助10
19秒前
toptop应助陶醉觅夏采纳,获得10
20秒前
Ftucyctucutct发布了新的文献求助30
21秒前
灵性书童完成签到 ,获得积分10
21秒前
Wu完成签到,获得积分10
22秒前
25秒前
25秒前
慕青应助TT2022采纳,获得10
26秒前
26秒前
小二郎应助jovrtic采纳,获得10
27秒前
小丸子发布了新的文献求助10
30秒前
墨墨完成签到 ,获得积分10
31秒前
小豆芽完成签到,获得积分10
31秒前
有机发布了新的文献求助10
32秒前
稻草人发布了新的文献求助30
33秒前
liu完成签到 ,获得积分10
34秒前
35秒前
云云邶完成签到,获得积分10
35秒前
Andres12138完成签到,获得积分10
36秒前
小鱼爱吃猫完成签到,获得积分20
37秒前
38秒前
fuxiao完成签到 ,获得积分10
38秒前
InfoNinja完成签到,获得积分0
40秒前
时空掌门人完成签到,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140237
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797649
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301910
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194