Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4

电解质 催化作用 电化学 晶界 化学工程 材料科学 电极 扩散 电流密度 吸附 无机化学 化学 微观结构 物理化学 冶金 有机化学 物理 量子力学 工程类 热力学
作者
Lei Bian,Ziyang Zhang,Hao Tian,Nana Tian,Zhi Ma,Zhongli Wang
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:54: 199-211 被引量:85
标识
DOI:10.1016/s1872-2067(23)64540-1
摘要

The electrocatalytic CO2 reduction reaction (CO2RR) is a promising technology to produce value-added hydrocarbon chemicals, however, achieving a high selectivity to C2+ products at the industrial current density remains a great challenge. Herein, we demonstrate grain boundary-abundant copper (Cu) nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2RR to ethylene (C2H4). The Cu(II) carbonate basic (Cu2CO3(OH)2) nanoribbon is used as a precursor to convert into metal Cu under in situ electrochemical reduction. Unexpectedly, the generated Cu nanoribbon is formed by stacking tiny nanoparticles with exposure of Cu(111), Cu(200) and Cu(220) facets, which creates abundant grain boundaries (GBs). During CO2RR test, the thickness of the catalyst layer is identified as a crucial factor for the mass transfer of CO2 and electrolyte. By tailoring the thickness of catalytic layer, CO2 and electrolyte can simultaneously reach the surface of catalyst and participate in CO2RR. Under the synergetic effects of GBs and balanced gas-liquid diffusion, the optimized electrode delivers the Faradaic efficiencies toward C2H4 and C2+ products as high as 67.2% and 82.1% at the current density of 700 mA cm−2, respectively. Moreover, the partial current density of C2H4 can reach up to 505 mA cm−2, which is significantly higher than most reported results. The in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectra show that abundant GBs enhance the activation of CO2 and significantly promote the formation and adsorption of *CO intermediates, which accelerate C-C coupling to form *OCCO and *OCCOH intermediates and improve the production of C2H4 and other C2+ products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Max完成签到,获得积分10
刚刚
木木198022完成签到,获得积分10
1秒前
Lucas应助小次之山采纳,获得20
1秒前
魔芋发布了新的文献求助10
1秒前
哆啦顺利毕业完成签到 ,获得积分10
2秒前
cq220完成签到,获得积分10
3秒前
学术小垃圾应助年糕菌采纳,获得50
3秒前
4秒前
酷波er应助腼腆的小熊猫采纳,获得10
4秒前
科研鸟发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
Hello应助柚子皮采纳,获得10
6秒前
拼搏的似狮完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
ED应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
yookia应助科研通管家采纳,获得10
8秒前
8秒前
go完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
科研通AI5应助ew采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得30
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421