A multiplier-free Rulkov neuron under memristive electromagnetic induction: Dynamics analysis, energy calculation, and circuit implementation

多稳态 记忆电阻器 吸引子 乘数(经济学) 计算机科学 拓扑(电路) 混乱的 人工神经元 平衡点 统计物理学 人工神经网络 控制理论(社会学) 数学 物理 人工智能 非线性系统 数学分析 微分方程 量子力学 组合数学 经济 宏观经济学 控制(管理)
作者
Shaohua Zhang,Cong Wang,Hongli Zhang,Hairong Lin
出处
期刊:Chaos [American Institute of Physics]
卷期号:33 (8) 被引量:10
标识
DOI:10.1063/5.0160751
摘要

Establishing a realistic and multiplier-free implemented biological neuron model is significant for recognizing and understanding natural firing behaviors, as well as advancing the integration of neuromorphic circuits. Importantly, memristors play a crucial role in constructing memristive neuron and network models by simulating synapses or electromagnetic induction. However, existing models lack the consideration of initial-boosted extreme multistability and its associated energy analysis. To this end, we propose a multiplier-free implementation of the Rulkov neuron model and utilize a periodic memristor to represent the electromagnetic induction effect, thereby achieving the biomimetic modeling of the non-autonomous memristive Rulkov (mRulkov) neuron. First, theoretical analysis demonstrates that the stability distribution of the time-varying line equilibrium point is determined by both the parameters and the memristor’s initial condition. Furthermore, numerical simulations show that the mRulkov neuron can exhibit parameter-dependent local spiking, local hidden spiking, and periodic bursting firing behaviors. In addition, based on the periodic characteristics of the memductance function, the topological invariance of the mRulkov neuron is comprehensively proved. Therefore, local basins of attraction, bifurcation diagrams, and attractors related to extreme multistability can be boosted by switching the memristor’s initial condition. Significantly, the novel boosted extreme multistability is discovered in the Rulkov neuron for the first time. More importantly, the energy transition associated with the boosting dynamics is revealed through computing the Hamilton energy distribution. Finally, we develop a simulation circuit for the non-autonomous mRulkov neuron and confirm the effectiveness of the multiplier-free implementation and the accuracy of the numerical results through PSpice simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助lishihao采纳,获得10
1秒前
2秒前
楠楠完成签到 ,获得积分20
2秒前
XinX完成签到,获得积分10
2秒前
huapeng发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
科研小白发布了新的文献求助10
6秒前
wonder123发布了新的文献求助10
6秒前
米米兔完成签到,获得积分10
7秒前
小冯发布了新的文献求助10
8秒前
8秒前
姜露萍发布了新的文献求助10
8秒前
9秒前
9秒前
旺旺小小酥完成签到,获得积分10
9秒前
10秒前
wonder123发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
研友_VZG7GZ应助huapeng采纳,获得10
12秒前
学术混子发布了新的文献求助10
12秒前
xmy发布了新的文献求助10
13秒前
汉堡包应助lm采纳,获得10
13秒前
13秒前
lishihao发布了新的文献求助10
14秒前
我是老大应助yxr0315采纳,获得10
14秒前
Donk完成签到 ,获得积分10
14秒前
来来发布了新的文献求助10
14秒前
陈老太发布了新的文献求助10
14秒前
CipherSage应助bbh采纳,获得10
15秒前
恋雅颖月应助姜露萍采纳,获得10
17秒前
十七发布了新的文献求助10
17秒前
17秒前
17秒前
小小阿杰发布了新的文献求助10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176