A multiplier-free Rulkov neuron under memristive electromagnetic induction: Dynamics analysis, energy calculation, and circuit implementation

多稳态 记忆电阻器 吸引子 乘数(经济学) 计算机科学 拓扑(电路) 混乱的 人工神经元 平衡点 统计物理学 人工神经网络 控制理论(社会学) 数学 物理 人工智能 非线性系统 数学分析 微分方程 组合数学 宏观经济学 经济 量子力学 控制(管理)
作者
Shaohua Zhang,Cong Wang,Hongli Zhang,Hairong Lin
出处
期刊:Chaos [American Institute of Physics]
卷期号:33 (8) 被引量:9
标识
DOI:10.1063/5.0160751
摘要

Establishing a realistic and multiplier-free implemented biological neuron model is significant for recognizing and understanding natural firing behaviors, as well as advancing the integration of neuromorphic circuits. Importantly, memristors play a crucial role in constructing memristive neuron and network models by simulating synapses or electromagnetic induction. However, existing models lack the consideration of initial-boosted extreme multistability and its associated energy analysis. To this end, we propose a multiplier-free implementation of the Rulkov neuron model and utilize a periodic memristor to represent the electromagnetic induction effect, thereby achieving the biomimetic modeling of the non-autonomous memristive Rulkov (mRulkov) neuron. First, theoretical analysis demonstrates that the stability distribution of the time-varying line equilibrium point is determined by both the parameters and the memristor’s initial condition. Furthermore, numerical simulations show that the mRulkov neuron can exhibit parameter-dependent local spiking, local hidden spiking, and periodic bursting firing behaviors. In addition, based on the periodic characteristics of the memductance function, the topological invariance of the mRulkov neuron is comprehensively proved. Therefore, local basins of attraction, bifurcation diagrams, and attractors related to extreme multistability can be boosted by switching the memristor’s initial condition. Significantly, the novel boosted extreme multistability is discovered in the Rulkov neuron for the first time. More importantly, the energy transition associated with the boosting dynamics is revealed through computing the Hamilton energy distribution. Finally, we develop a simulation circuit for the non-autonomous mRulkov neuron and confirm the effectiveness of the multiplier-free implementation and the accuracy of the numerical results through PSpice simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钦川完成签到,获得积分10
2秒前
ww完成签到,获得积分20
2秒前
2秒前
香蕉觅云应助杨果果采纳,获得10
5秒前
晴天向日葵完成签到,获得积分10
6秒前
马贝贝发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
qqq发布了新的文献求助10
8秒前
子车茗应助hji采纳,获得30
9秒前
zzz完成签到,获得积分10
9秒前
鳗鱼语风完成签到,获得积分10
9秒前
公衍尚完成签到,获得积分20
10秒前
11秒前
Daidai完成签到,获得积分10
11秒前
狂野萤应助夜良采纳,获得10
12秒前
Shibssjd发布了新的文献求助10
13秒前
英俊丹寒完成签到 ,获得积分10
14秒前
song11完成签到,获得积分20
15秒前
负责吃饭发布了新的文献求助30
15秒前
酷酷以莲完成签到,获得积分10
15秒前
开放幻丝完成签到 ,获得积分10
16秒前
科研通AI2S应助我爱电催化采纳,获得10
17秒前
18秒前
18秒前
song11发布了新的文献求助10
18秒前
Zack完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
21秒前
green发布了新的文献求助10
22秒前
夕晴发布了新的文献求助10
23秒前
24秒前
25秒前
ycliang应助Who采纳,获得10
25秒前
sissiarno应助井野浮采纳,获得200
26秒前
Renly应助爱学习的YY采纳,获得20
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643