A multiplier-free Rulkov neuron under memristive electromagnetic induction: Dynamics analysis, energy calculation, and circuit implementation

多稳态 记忆电阻器 吸引子 乘数(经济学) 计算机科学 拓扑(电路) 混乱的 人工神经元 平衡点 统计物理学 人工神经网络 控制理论(社会学) 数学 物理 人工智能 非线性系统 数学分析 微分方程 量子力学 组合数学 经济 宏观经济学 控制(管理)
作者
Shaohua Zhang,Cong Wang,Hongli Zhang,Hairong Lin
出处
期刊:Chaos [American Institute of Physics]
卷期号:33 (8) 被引量:10
标识
DOI:10.1063/5.0160751
摘要

Establishing a realistic and multiplier-free implemented biological neuron model is significant for recognizing and understanding natural firing behaviors, as well as advancing the integration of neuromorphic circuits. Importantly, memristors play a crucial role in constructing memristive neuron and network models by simulating synapses or electromagnetic induction. However, existing models lack the consideration of initial-boosted extreme multistability and its associated energy analysis. To this end, we propose a multiplier-free implementation of the Rulkov neuron model and utilize a periodic memristor to represent the electromagnetic induction effect, thereby achieving the biomimetic modeling of the non-autonomous memristive Rulkov (mRulkov) neuron. First, theoretical analysis demonstrates that the stability distribution of the time-varying line equilibrium point is determined by both the parameters and the memristor’s initial condition. Furthermore, numerical simulations show that the mRulkov neuron can exhibit parameter-dependent local spiking, local hidden spiking, and periodic bursting firing behaviors. In addition, based on the periodic characteristics of the memductance function, the topological invariance of the mRulkov neuron is comprehensively proved. Therefore, local basins of attraction, bifurcation diagrams, and attractors related to extreme multistability can be boosted by switching the memristor’s initial condition. Significantly, the novel boosted extreme multistability is discovered in the Rulkov neuron for the first time. More importantly, the energy transition associated with the boosting dynamics is revealed through computing the Hamilton energy distribution. Finally, we develop a simulation circuit for the non-autonomous mRulkov neuron and confirm the effectiveness of the multiplier-free implementation and the accuracy of the numerical results through PSpice simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天上人间完成签到,获得积分20
1秒前
天才都这样完成签到,获得积分10
1秒前
Jiali完成签到,获得积分10
1秒前
2秒前
壮观定帮完成签到,获得积分10
3秒前
3秒前
3秒前
haha发布了新的文献求助10
3秒前
NIA发布了新的文献求助10
3秒前
4秒前
李爱国应助暮色采纳,获得10
4秒前
4秒前
李牧发布了新的文献求助10
4秒前
5秒前
Kristina完成签到,获得积分10
6秒前
Cynthia发布了新的文献求助10
7秒前
7秒前
伊雪儿发布了新的文献求助10
7秒前
飞絮完成签到,获得积分10
7秒前
朱先生完成签到 ,获得积分10
7秒前
标致凝莲完成签到,获得积分10
8秒前
Marita完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
FashionBoy应助细心的平蝶采纳,获得10
8秒前
9秒前
石墨完成签到,获得积分10
9秒前
华仔应助zwd采纳,获得10
9秒前
小二郎应助悦耳代双采纳,获得30
9秒前
10秒前
10秒前
10秒前
10秒前
庐陵流川枫完成签到,获得积分10
11秒前
Orange应助Xiaoyan采纳,获得10
12秒前
岑晓冰完成签到 ,获得积分10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351