A multi-attribute decision-making fusion model for stock trading with customizable investor personality traits in a picture fuzzy environment

计算机科学 托普西斯 证券交易所 模糊逻辑 人工智能 机器学习 数据挖掘 排名(信息检索) 遗传算法 运筹学 数学 财务 经济
作者
Shio Gai Quek,Ganeshsree Selvachandran,Angie Yih Tsyr Wong,Fiona Wong,Weiping Ding,Ajith Abraham
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110715-110715 被引量:2
标识
DOI:10.1016/j.asoc.2023.110715
摘要

In this paper, a fuzzy logic-based machine learning (ML) algorithm is introduced. This proposed ML algorithm accepts picture fuzzy sets (PFS) as the fuzzified input and incorporates genetic algorithm (GA) during the training process. The proposed ML algorithm is then incorporated into two well-known decision-making methods, namely the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Evaluation Based on Distance from Average Solution (EDAS). These two decision-making methods and the proposed ML algorithm are then applied to solve a multi-attribute decision-making (MADM) problem related to the evaluation and ranking of public listed companies based on their stock performance, in accordance with investors’ personalities. The actual daily closing stock price of five public listed companies from the big market capitalization (Big Cap) category traded in the Kuala Lumpur Stock Exchange (KLSE) for a period of 10 years is used as the datasets for this study. Monte Carlo simulation is used to verify the accuracy of the results. In addition, a comprehensive comparative study of some recent PFS-based decision-making methods in the existing literature and the proposed methods is conducted, and all the typical instances of the investors’ personalities are observed. The results obtained through this comparative study corroborates the results obtained via the proposed methods, and this proves the effectiveness of the proposed methods. The differences in the results obtained via the different methods are analyzed and discussed, and this again proves that the results obtained via the proposed methods are effective and consistent with the judgments of human experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
yx_cheng应助科研通管家采纳,获得30
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
张雷应助科研通管家采纳,获得20
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
闪闪发布了新的文献求助10
2秒前
2秒前
LC发布了新的文献求助10
4秒前
zz发布了新的文献求助20
5秒前
清酒少年游完成签到,获得积分10
5秒前
彭于晏应助落寞的无施采纳,获得10
5秒前
7秒前
7秒前
搞怪的向珊关注了科研通微信公众号
7秒前
影默完成签到,获得积分10
10秒前
10秒前
悲凉的尔蓝完成签到,获得积分10
10秒前
10秒前
王星星发布了新的文献求助10
11秒前
11秒前
桐桐应助Sure采纳,获得30
13秒前
Geodada完成签到,获得积分10
14秒前
默认用户名完成签到,获得积分10
14秒前
完美世界应助Ashley采纳,获得10
14秒前
武雨寒发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430