A multi-attribute decision-making fusion model for stock trading with customizable investor personality traits in a picture fuzzy environment

计算机科学 托普西斯 证券交易所 模糊逻辑 人工智能 机器学习 数据挖掘 排名(信息检索) 遗传算法 运筹学 数学 财务 经济
作者
Shio Gai Quek,Ganeshsree Selvachandran,Angie Yih Tsyr Wong,Fiona Wong,Weiping Ding,Ajith Abraham
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:147: 110715-110715 被引量:2
标识
DOI:10.1016/j.asoc.2023.110715
摘要

In this paper, a fuzzy logic-based machine learning (ML) algorithm is introduced. This proposed ML algorithm accepts picture fuzzy sets (PFS) as the fuzzified input and incorporates genetic algorithm (GA) during the training process. The proposed ML algorithm is then incorporated into two well-known decision-making methods, namely the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Evaluation Based on Distance from Average Solution (EDAS). These two decision-making methods and the proposed ML algorithm are then applied to solve a multi-attribute decision-making (MADM) problem related to the evaluation and ranking of public listed companies based on their stock performance, in accordance with investors’ personalities. The actual daily closing stock price of five public listed companies from the big market capitalization (Big Cap) category traded in the Kuala Lumpur Stock Exchange (KLSE) for a period of 10 years is used as the datasets for this study. Monte Carlo simulation is used to verify the accuracy of the results. In addition, a comprehensive comparative study of some recent PFS-based decision-making methods in the existing literature and the proposed methods is conducted, and all the typical instances of the investors’ personalities are observed. The results obtained through this comparative study corroborates the results obtained via the proposed methods, and this proves the effectiveness of the proposed methods. The differences in the results obtained via the different methods are analyzed and discussed, and this again proves that the results obtained via the proposed methods are effective and consistent with the judgments of human experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh发布了新的文献求助10
1秒前
冯心雨完成签到,获得积分10
1秒前
Boyce发布了新的文献求助10
2秒前
3秒前
bono完成签到 ,获得积分10
4秒前
董春伟完成签到,获得积分10
4秒前
5秒前
机灵雨南发布了新的文献求助10
5秒前
刘某发布了新的文献求助10
7秒前
从容面包关注了科研通微信公众号
7秒前
健壮的花瓣完成签到 ,获得积分10
8秒前
11完成签到,获得积分10
9秒前
9秒前
11秒前
Ithesleepyhead完成签到 ,获得积分10
11秒前
Hello应助溜溜小雁子采纳,获得10
12秒前
核桃发布了新的文献求助10
12秒前
如初发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
11111完成签到 ,获得积分10
14秒前
热爱完成签到,获得积分10
15秒前
黒子鳥关注了科研通微信公众号
15秒前
科研通AI6应助谦让的博采纳,获得10
15秒前
16秒前
互助遵法尚德完成签到,获得积分0
17秒前
七个丸子应助刘某采纳,获得10
17秒前
爱吃橙子完成签到 ,获得积分10
18秒前
18秒前
科研通AI2S应助11采纳,获得10
18秒前
浮游应助小卷心菜采纳,获得10
18秒前
20秒前
arthur完成签到,获得积分10
20秒前
22秒前
你我山巅自相逢完成签到 ,获得积分10
22秒前
放松的AI完成签到,获得积分10
23秒前
23秒前
小马甲应助dq1992采纳,获得10
23秒前
24秒前
从容面包发布了新的文献求助10
25秒前
无糖气泡水完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939