A multi-attribute decision-making fusion model for stock trading with customizable investor personality traits in a picture fuzzy environment

计算机科学 托普西斯 证券交易所 模糊逻辑 人工智能 机器学习 数据挖掘 排名(信息检索) 遗传算法 运筹学 数学 财务 经济
作者
Shio Gai Quek,Ganeshsree Selvachandran,Angie Yih Tsyr Wong,Fiona Wong,Weiping Ding,Ajith Abraham
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110715-110715 被引量:2
标识
DOI:10.1016/j.asoc.2023.110715
摘要

In this paper, a fuzzy logic-based machine learning (ML) algorithm is introduced. This proposed ML algorithm accepts picture fuzzy sets (PFS) as the fuzzified input and incorporates genetic algorithm (GA) during the training process. The proposed ML algorithm is then incorporated into two well-known decision-making methods, namely the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Evaluation Based on Distance from Average Solution (EDAS). These two decision-making methods and the proposed ML algorithm are then applied to solve a multi-attribute decision-making (MADM) problem related to the evaluation and ranking of public listed companies based on their stock performance, in accordance with investors’ personalities. The actual daily closing stock price of five public listed companies from the big market capitalization (Big Cap) category traded in the Kuala Lumpur Stock Exchange (KLSE) for a period of 10 years is used as the datasets for this study. Monte Carlo simulation is used to verify the accuracy of the results. In addition, a comprehensive comparative study of some recent PFS-based decision-making methods in the existing literature and the proposed methods is conducted, and all the typical instances of the investors’ personalities are observed. The results obtained through this comparative study corroborates the results obtained via the proposed methods, and this proves the effectiveness of the proposed methods. The differences in the results obtained via the different methods are analyzed and discussed, and this again proves that the results obtained via the proposed methods are effective and consistent with the judgments of human experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空晓山发布了新的文献求助10
刚刚
刚刚
wanci应助baolongzhan采纳,获得10
刚刚
兴奋棒球完成签到,获得积分10
刚刚
Akim应助cloud采纳,获得10
刚刚
丘比特应助Creamai采纳,获得10
1秒前
偏偏海发布了新的文献求助10
1秒前
徐丹枫发布了新的文献求助10
2秒前
霸气的惜天完成签到,获得积分10
4秒前
4秒前
欣欣儿完成签到 ,获得积分10
4秒前
霸气夏旋完成签到 ,获得积分10
6秒前
7秒前
情怀应助呓语采纳,获得10
8秒前
chankaka完成签到,获得积分20
8秒前
李lll发布了新的文献求助10
8秒前
10秒前
OliverW完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
chankaka关注了科研通微信公众号
13秒前
13秒前
研友_VZG7GZ应助李lll采纳,获得10
16秒前
顺利毕业应助周周采纳,获得10
16秒前
元寄灵发布了新的文献求助10
16秒前
Kannan发布了新的文献求助10
17秒前
王九八发布了新的文献求助10
17秒前
xiaoou发布了新的文献求助10
17秒前
18秒前
18秒前
Owen应助KE采纳,获得10
19秒前
20秒前
庆次发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助动人的一一采纳,获得10
22秒前
赫赫完成签到,获得积分10
22秒前
luojian完成签到,获得积分10
22秒前
依琬完成签到,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266784
求助须知:如何正确求助?哪些是违规求助? 2906482
关于积分的说明 8338026
捐赠科研通 2576794
什么是DOI,文献DOI怎么找? 1400728
科研通“疑难数据库(出版商)”最低求助积分说明 654929
邀请新用户注册赠送积分活动 633810