Review of the Evolution of Magnetorheological Fluid-Based Rehabilitative Devices: From the Perspective of Modeling, Sensors and Control Strategies

磁流变液 阻尼器 计算机科学 控制工程 工程类
作者
Akhila Bhat,Vidya S. Rao,N. S. Jayalakshmi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 88759-88777 被引量:6
标识
DOI:10.1109/access.2023.3305674
摘要

Over the past decade, rehabilitative devices have undergone significant advancements. Orthoses, which are assistive limb devices, have transitioned from passive supportive devices to active or semiactive devices with adjustable damping. Similarly, prosthetic limb-replacement devices for amputees have shifted towards the integration of semiactive dampers instead of passive or bulky dampers. The implementation of semiactive damping is achieved through the use of smart magnetorheological (MR) fluids that can modify their viscosity based on the input current, resulting in reduced power consumption. This article focuses mainly on modelling, sensors and control strategies in MR damper-based rehabilitative devices since these areas contribute to the development of the overall end product. There have been notable improvements in the modelling of human knee joints and the damping system components, aiming to achieve more efficient damping control. Traditional mathematical equations, such as Lagrangian and Newtonian formulations, have been supplemented with machine learning algorithms. Additionally, the utilization of various sensor combinations to measure knee/ankle joint angles has advanced. These sensors range from basic mechanical sensors to wireless inertial and piezoelectric sensors, enabling faster and more diverse communication. Furthermore, control algorithms have also witnessed a progression from classical control approaches to more sophisticated strategies such as fuzzy control and neural network controllers. These advanced control algorithms enhance the overall performance and responsiveness of the rehabilitative devices. However, there are certain disadvantages found in MR fluids, sensors, modelling and control algorithms that are discussed further in this review article. This review explores the developments in different rehabilitative devices that integrate modelling, sensors, and control designs to achieve optimal and efficient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粱乘风完成签到,获得积分10
1秒前
幽壑之潜蛟应助lalala采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
WWXWWX应助科研通管家采纳,获得10
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
清秋若月应助科研通管家采纳,获得30
4秒前
duanhuiyuan应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
夏筱发布了新的文献求助10
4秒前
duanhuiyuan应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
5秒前
沙脑发布了新的文献求助10
7秒前
8秒前
9秒前
瞿选葵发布了新的文献求助10
9秒前
11秒前
故意的念寒完成签到,获得积分10
13秒前
蓝的非笑发布了新的文献求助10
14秒前
15秒前
无花果应助小孙采纳,获得30
15秒前
希望天下0贩的0应助夏筱采纳,获得10
16秒前
yaoyaoyao完成签到 ,获得积分10
18秒前
敏er好学完成签到,获得积分10
18秒前
在水一方应助蓝的非笑采纳,获得10
20秒前
21秒前
GUGU发布了新的文献求助10
22秒前
JamesPei应助iorpi采纳,获得10
22秒前
fffccclll完成签到,获得积分10
23秒前
谁敢说抹茶不好吃完成签到,获得积分20
23秒前
ww发布了新的文献求助10
24秒前
willer986完成签到 ,获得积分10
25秒前
万能图书馆应助WLL采纳,获得10
27秒前
30秒前
中和皇极应助奶昔采纳,获得10
30秒前
31秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700