亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey on Threat Hunting in Enterprise Networks

计算机安全 计算机科学 入侵检测系统 主动性 网络威胁 蜜罐 风险分析(工程) 业务 经济 管理
作者
Boubakr Nour,Makan Pourzandi,Mourad Debbabi
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (4): 2299-2324 被引量:13
标识
DOI:10.1109/comst.2023.3299519
摘要

With the rapidly evolving technological landscape, the huge development of the Internet of Things, and the embracing of digital transformation, the world is witnessing an explosion in data generation and a rapid evolution of new applications that lead to new, wider, and more sophisticated threats that are complex and hard to be detected. Advanced persistence threats use continuous, clandestine, and sophisticated techniques to gain access to a system and remain hidden for a prolonged period of time, with potentially destructive consequences. Those stealthy attacks are often not detectable by advanced intrusion detection systems (e.g., LightBasin attack was detected in 2022 and has been active since 2016). Indeed, threat actors are able to quickly and intelligently alter their tactics to avoid being detected by security defense lines (e.g., prevention and detection mechanisms). In response to these evolving threats, organizations need to adopt new proactive defense approaches. Threat hunting is a proactive security line exercised to uncover stealthy attacks, malicious activities, and suspicious entities that could circumvent standard detection mechanisms. Additionally, threat hunting is an iterative approach to generate and revise threat hypotheses endeavoring to provide early attack detection in a proactive way. The proactiveness consists of testing and validating the initial hypothesis using various manual and automated tools/techniques with the objective of confirming/refuting the existence of an attack. This survey studies the threat hunting concept and provides a comprehensive review of the existing solutions for Enterprise networks. In particular, we provide a threat hunting taxonomy based on the used technique and a sub-classification based on the detailed approach. Furthermore, we discuss the existing standardization efforts. Finally, we provide a qualitative discussion on current advances and identify various research gaps and challenges that may be considered by the research community to design concrete and efficient threat hunting solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yau完成签到,获得积分10
23秒前
23秒前
陈杰发布了新的文献求助10
27秒前
pluto应助陈杰采纳,获得10
58秒前
59秒前
1分钟前
ZJR发布了新的文献求助10
1分钟前
huyx发布了新的文献求助10
1分钟前
yishan完成签到,获得积分10
1分钟前
GRATE完成签到 ,获得积分10
2分钟前
xiaofeiyan完成签到 ,获得积分10
2分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
3分钟前
辛勤千筹发布了新的文献求助20
3分钟前
陈杰完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
7分钟前
luckyalias完成签到 ,获得积分10
7分钟前
ppapppap发布了新的文献求助10
7分钟前
ppapppap完成签到,获得积分20
7分钟前
wangermazi完成签到,获得积分10
8分钟前
脑洞疼应助Cassel采纳,获得10
8分钟前
9分钟前
Cassel发布了新的文献求助10
9分钟前
桐桐应助科研通管家采纳,获得10
9分钟前
传奇3应助科研通管家采纳,获得10
11分钟前
耳与总完成签到,获得积分10
13分钟前
Sandy完成签到,获得积分10
14分钟前
科研通AI2S应助cc采纳,获得10
15分钟前
17分钟前
彭于晏应助科研通管家采纳,获得10
17分钟前
如意竺完成签到,获得积分10
18分钟前
18分钟前
18分钟前
19分钟前
LLL完成签到,获得积分10
19分钟前
jyy完成签到,获得积分10
19分钟前
19分钟前
zz发布了新的文献求助10
19分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776302
关于积分的说明 7729792
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622664
版权声明 600408