Research on end-to-end fault prediction method of rolling bearing based on deep learning

计算机科学 卷积神经网络 稳健性(进化) 人工智能 正规化(语言学) 特征提取 模式识别(心理学) 人工神经网络 深度学习 时域 计算机视觉 基因 生物化学 化学
作者
Hongbo Xü,Jun Li,Xisheng Jia,Mingdong Qiu
标识
DOI:10.1049/icp.2023.1669
摘要

In rolling bearing fault prediction, the selection of time-domain and frequency-domain features is often influenced by subjective factors, and the full utilization of time and space features is challenging. To address these issues, a method based on Convolutional Neural Network (CNN) and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The method involves two main steps. Firstly, a convolutional neural network is used to extract original vibration signal features. A batch regularization layer is added after the convolutional layer to optimize weight and accelerate model training. The efficiency of feature extraction is improved by extending the first convolutional layer and adjusting the step size. Secondly, a bidirectional long-short-term memory neural network is introduced to enhance the utilization of temporal information and extract temporal features. The model's robustness is strengthened through the incorporation of batch regularization layers and dropout layers, reducing data-to-data dependencies. The proposed method is validated using two sets of rolling bearing test data. The results demonstrate the improved fault prediction accuracy compared to traditional methods, along with better performance under different working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李梦关注了科研通微信公众号
刚刚
2秒前
3秒前
天天快乐应助调皮帆布鞋采纳,获得10
3秒前
jojo144发布了新的文献求助10
3秒前
3秒前
科研通AI5应助菜菜采纳,获得10
3秒前
skittles发布了新的文献求助20
3秒前
3秒前
发文必过发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
hh发布了新的文献求助10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
cosmos应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
琥珀完成签到,获得积分10
6秒前
522完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助摩根采纳,获得10
7秒前
8秒前
8秒前
老婆婆不讲理完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905