Research on end-to-end fault prediction method of rolling bearing based on deep learning

计算机科学 卷积神经网络 稳健性(进化) 人工智能 正规化(语言学) 特征提取 模式识别(心理学) 人工神经网络 深度学习 时域 计算机视觉 基因 生物化学 化学
作者
Hongbo Xü,Jun Li,Xisheng Jia,Mingdong Qiu
标识
DOI:10.1049/icp.2023.1669
摘要

In rolling bearing fault prediction, the selection of time-domain and frequency-domain features is often influenced by subjective factors, and the full utilization of time and space features is challenging. To address these issues, a method based on Convolutional Neural Network (CNN) and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The method involves two main steps. Firstly, a convolutional neural network is used to extract original vibration signal features. A batch regularization layer is added after the convolutional layer to optimize weight and accelerate model training. The efficiency of feature extraction is improved by extending the first convolutional layer and adjusting the step size. Secondly, a bidirectional long-short-term memory neural network is introduced to enhance the utilization of temporal information and extract temporal features. The model's robustness is strengthened through the incorporation of batch regularization layers and dropout layers, reducing data-to-data dependencies. The proposed method is validated using two sets of rolling bearing test data. The results demonstrate the improved fault prediction accuracy compared to traditional methods, along with better performance under different working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
从容傲柏完成签到,获得积分10
2秒前
yuyuyu发布了新的文献求助10
3秒前
羊羊羊完成签到,获得积分10
3秒前
4秒前
7秒前
LYF完成签到,获得积分10
8秒前
浮游应助知性的安波采纳,获得10
8秒前
9秒前
10秒前
wshwx完成签到,获得积分10
10秒前
撒西不理完成签到,获得积分10
12秒前
酷波er应助嘿嘿嘿采纳,获得10
13秒前
CipherSage应助12345采纳,获得10
13秒前
13秒前
LYF发布了新的文献求助10
13秒前
忧郁小刺猬完成签到,获得积分10
15秒前
陈奕迅完成签到,获得积分10
15秒前
16秒前
16秒前
wangdh发布了新的文献求助10
18秒前
开心可乐不脆皮完成签到 ,获得积分20
20秒前
忧虑的花卷完成签到,获得积分10
20秒前
坚强夜白发布了新的文献求助10
21秒前
洁净的易巧完成签到,获得积分10
23秒前
Sophia发布了新的文献求助10
23秒前
23秒前
24秒前
SciGPT应助神勇的夜山采纳,获得10
24秒前
美满向薇发布了新的文献求助10
25秒前
天才小能喵完成签到 ,获得积分0
27秒前
搞笑羽球人完成签到,获得积分10
27秒前
酷波er应助忱麓裔采纳,获得10
29秒前
蓝天应助晴朗的蓝采纳,获得10
29秒前
29秒前
大模型应助王明磊采纳,获得10
29秒前
32秒前
dw完成签到,获得积分10
32秒前
VV完成签到,获得积分10
33秒前
乐乐完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363