Physics-Informed Neural Networks for solving transient unconfined groundwater flow

可解释性 潜水的 人工神经网络 计算机科学 背景(考古学) 含水层 灵活性(工程) 地下水 地下水流 人工智能 物理定律 机器学习 地质学 岩土工程 数学 物理 古生物学 统计 量子力学
作者
Daniele Secci,Vanessa A. Godoy,J. Jaime Gómez‐Hernández
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:182: 105494-105494 被引量:8
标识
DOI:10.1016/j.cageo.2023.105494
摘要

Neural networks excel in various machine learning applications; however, they lack the physical interpretability and constraints crucial for numerous scientific and engineering problems. This limitation hinders their ability to accurately capture and predict complex physical systems' behavior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks (PINNs) are a class of machine learning models that integrate the power of neural networks with the physical laws governing natural phenomena. PINNs provide an effective tool for solving intricate physical problems, ranging from fluid dynamics to materials science, by incorporating physical constraints into the neural network architecture. PINNs can substantially enhance the accuracy and efficiency of model predictions, even in data-limited situations. This work offers insight into recent developments in the PINN field, including their mathematical formulation and training algorithms, and emphasizes their application in solving transient unconfined groundwater flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary condition, and properly accounting for its position is vital for precise predictions of unconfined groundwater flow and related environmental and engineering applications. The study's objective is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distribution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are examined: the first involves a homogeneous and isotropic aquifer, while the second comprises a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this emerging research area are also explored, and essential directions for future research are underscored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助zhanghao采纳,获得10
1秒前
加油干完成签到,获得积分10
2秒前
韩谷子完成签到 ,获得积分10
2秒前
2秒前
2秒前
汉堡包应助自信安荷采纳,获得10
4秒前
专一的网络完成签到,获得积分10
4秒前
liliuuuuuuuu完成签到 ,获得积分10
4秒前
宋宋发布了新的文献求助10
4秒前
大模型应助jiuwu采纳,获得10
5秒前
5秒前
lala完成签到,获得积分10
6秒前
return33完成签到,获得积分10
6秒前
7秒前
山竹炖鸡爪完成签到,获得积分10
7秒前
优雅凛完成签到,获得积分10
7秒前
8秒前
田様应助yy采纳,获得30
8秒前
8秒前
9秒前
rammy完成签到,获得积分10
9秒前
yueyueyue完成签到,获得积分10
9秒前
Zing发布了新的文献求助10
10秒前
脑洞疼应助julienCCC采纳,获得10
10秒前
10秒前
HHHHH完成签到,获得积分10
12秒前
大方雪卉完成签到,获得积分10
12秒前
xsad完成签到,获得积分10
12秒前
12秒前
zhanghao发布了新的文献求助10
13秒前
科研通AI2S应助甜椒采纳,获得10
13秒前
龅牙苏完成签到,获得积分10
14秒前
打打应助认真的寒香采纳,获得10
14秒前
15秒前
xxxxx炒菜发布了新的文献求助10
15秒前
web123完成签到,获得积分10
15秒前
浅呀呀呀完成签到 ,获得积分10
16秒前
汉堡包应助青mu采纳,获得10
16秒前
花花完成签到 ,获得积分10
16秒前
优雅凛发布了新的文献求助10
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445