Physics-Informed Neural Networks for solving transient unconfined groundwater flow

可解释性 潜水的 人工神经网络 计算机科学 背景(考古学) 含水层 灵活性(工程) 地下水 地下水流 人工智能 物理定律 机器学习 地质学 岩土工程 数学 物理 古生物学 统计 量子力学
作者
Daniele Secci,Vanessa A. Godoy,J. Jaime Gómez‐Hernández
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:182: 105494-105494 被引量:8
标识
DOI:10.1016/j.cageo.2023.105494
摘要

Neural networks excel in various machine learning applications; however, they lack the physical interpretability and constraints crucial for numerous scientific and engineering problems. This limitation hinders their ability to accurately capture and predict complex physical systems' behavior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks (PINNs) are a class of machine learning models that integrate the power of neural networks with the physical laws governing natural phenomena. PINNs provide an effective tool for solving intricate physical problems, ranging from fluid dynamics to materials science, by incorporating physical constraints into the neural network architecture. PINNs can substantially enhance the accuracy and efficiency of model predictions, even in data-limited situations. This work offers insight into recent developments in the PINN field, including their mathematical formulation and training algorithms, and emphasizes their application in solving transient unconfined groundwater flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary condition, and properly accounting for its position is vital for precise predictions of unconfined groundwater flow and related environmental and engineering applications. The study's objective is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distribution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are examined: the first involves a homogeneous and isotropic aquifer, while the second comprises a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this emerging research area are also explored, and essential directions for future research are underscored.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
yb完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
在水一方应助HJJHJH采纳,获得10
3秒前
阿谈完成签到,获得积分10
5秒前
星辰大海应助牛牛牛采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
吼吼应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
花花世界迷人眼完成签到,获得积分10
5秒前
罗非鱼应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得100
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
吼吼应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
吼吼应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679737
求助须知:如何正确求助?哪些是违规求助? 4993550
关于积分的说明 15170652
捐赠科研通 4839614
什么是DOI,文献DOI怎么找? 2593472
邀请新用户注册赠送积分活动 1546560
关于科研通互助平台的介绍 1504674