亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Informed Neural Networks for solving transient unconfined groundwater flow

可解释性 潜水的 人工神经网络 计算机科学 背景(考古学) 含水层 灵活性(工程) 地下水 地下水流 人工智能 物理定律 机器学习 地质学 岩土工程 数学 物理 古生物学 统计 量子力学
作者
Daniele Secci,Vanessa A. Godoy,J. Jaime Gómez‐Hernández
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:182: 105494-105494 被引量:8
标识
DOI:10.1016/j.cageo.2023.105494
摘要

Neural networks excel in various machine learning applications; however, they lack the physical interpretability and constraints crucial for numerous scientific and engineering problems. This limitation hinders their ability to accurately capture and predict complex physical systems' behavior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks (PINNs) are a class of machine learning models that integrate the power of neural networks with the physical laws governing natural phenomena. PINNs provide an effective tool for solving intricate physical problems, ranging from fluid dynamics to materials science, by incorporating physical constraints into the neural network architecture. PINNs can substantially enhance the accuracy and efficiency of model predictions, even in data-limited situations. This work offers insight into recent developments in the PINN field, including their mathematical formulation and training algorithms, and emphasizes their application in solving transient unconfined groundwater flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary condition, and properly accounting for its position is vital for precise predictions of unconfined groundwater flow and related environmental and engineering applications. The study's objective is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distribution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are examined: the first involves a homogeneous and isotropic aquifer, while the second comprises a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this emerging research area are also explored, and essential directions for future research are underscored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助冰渊悬月采纳,获得10
3秒前
7秒前
不安的鸡翅完成签到,获得积分10
9秒前
ZBQ发布了新的文献求助10
10秒前
gezid完成签到 ,获得积分10
13秒前
科研fw完成签到 ,获得积分10
14秒前
jessie完成签到 ,获得积分10
15秒前
coolkid应助zzz采纳,获得10
16秒前
msk完成签到 ,获得积分10
18秒前
zhiweiyan完成签到,获得积分10
19秒前
32秒前
YMS_DAMAOMI发布了新的文献求助10
38秒前
39秒前
ZBQ完成签到,获得积分10
40秒前
善学以致用应助皮崇知采纳,获得10
42秒前
44秒前
CipherSage应助科研通管家采纳,获得10
46秒前
爆米花应助科研通管家采纳,获得30
46秒前
ymr完成签到 ,获得积分10
47秒前
52秒前
53秒前
皮崇知发布了新的文献求助10
1分钟前
美满雁芙完成签到 ,获得积分10
1分钟前
彪壮的凡波完成签到,获得积分10
1分钟前
哦豁完成签到 ,获得积分10
1分钟前
比巴卜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
明亮剑完成签到 ,获得积分10
1分钟前
橙子味的邱憨憨完成签到 ,获得积分10
1分钟前
eye应助hp571采纳,获得10
1分钟前
jyy应助调皮的浩天采纳,获得10
1分钟前
1分钟前
233完成签到 ,获得积分10
1分钟前
ll完成签到 ,获得积分10
1分钟前
ST发布了新的文献求助10
1分钟前
Mine完成签到,获得积分10
2分钟前
在水一方应助Mine采纳,获得10
2分钟前
Hello应助leanne采纳,获得10
2分钟前
谷千千完成签到,获得积分20
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965622
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155441
捐赠科研通 3245347
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188