Physics-Informed Neural Networks for solving transient unconfined groundwater flow

可解释性 潜水的 人工神经网络 计算机科学 背景(考古学) 含水层 灵活性(工程) 地下水 地下水流 人工智能 物理定律 机器学习 地质学 岩土工程 数学 物理 古生物学 统计 量子力学
作者
Daniele Secci,Vanessa A. Godoy,J. Jaime Gómez‐Hernández
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:182: 105494-105494 被引量:8
标识
DOI:10.1016/j.cageo.2023.105494
摘要

Neural networks excel in various machine learning applications; however, they lack the physical interpretability and constraints crucial for numerous scientific and engineering problems. This limitation hinders their ability to accurately capture and predict complex physical systems' behavior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks (PINNs) are a class of machine learning models that integrate the power of neural networks with the physical laws governing natural phenomena. PINNs provide an effective tool for solving intricate physical problems, ranging from fluid dynamics to materials science, by incorporating physical constraints into the neural network architecture. PINNs can substantially enhance the accuracy and efficiency of model predictions, even in data-limited situations. This work offers insight into recent developments in the PINN field, including their mathematical formulation and training algorithms, and emphasizes their application in solving transient unconfined groundwater flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary condition, and properly accounting for its position is vital for precise predictions of unconfined groundwater flow and related environmental and engineering applications. The study's objective is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distribution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are examined: the first involves a homogeneous and isotropic aquifer, while the second comprises a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this emerging research area are also explored, and essential directions for future research are underscored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研民工发布了新的文献求助10
1秒前
lxj发布了新的文献求助10
1秒前
orixero应助伟伟采纳,获得10
2秒前
无花果应助zhaowen采纳,获得10
4秒前
4秒前
4秒前
6秒前
7秒前
科研民工完成签到,获得积分20
7秒前
明亮无颜发布了新的文献求助20
9秒前
凌晨四点发布了新的文献求助30
10秒前
chosmos发布了新的文献求助10
10秒前
11秒前
科目三应助zhaoyuqing采纳,获得10
12秒前
Hello应助糊糊采纳,获得10
12秒前
eerrttyyuu发布了新的文献求助10
13秒前
13秒前
13秒前
空想家完成签到,获得积分10
13秒前
15秒前
1122完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助chosmos采纳,获得10
16秒前
16秒前
852应助zzz采纳,获得10
17秒前
18秒前
18秒前
锐哥发布了新的文献求助10
18秒前
空想家发布了新的文献求助10
19秒前
19秒前
司空剑封完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
ramsey33发布了新的文献求助10
22秒前
愿景完成签到,获得积分10
23秒前
胡可发布了新的文献求助10
23秒前
24秒前
24秒前
香蕉觅云应助Kenneyhahaha采纳,获得10
26秒前
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325288
求助须知:如何正确求助?哪些是违规求助? 2955988
关于积分的说明 8578548
捐赠科研通 2633885
什么是DOI,文献DOI怎么找? 1441560
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654600