Competitive swarm optimization with subset selection based manifold learning for multimodal multi-objective optimization

数学优化 多目标优化 群体行为 趋同(经济学) 计算机科学 选择(遗传算法) 歧管(流体力学) 帕累托原理 空格(标点符号) 数学 人工智能 工程类 经济增长 机械工程 操作系统 经济
作者
Weiwei Zhang,Yan Fan,Gary G. Yen,F. Wang,Guoqing Li
出处
期刊:Information Sciences [Elsevier]
卷期号:654: 119860-119860
标识
DOI:10.1016/j.ins.2023.119860
摘要

There are two major challenges when handling the multimodal multi-objective optimization (MMO) problems. One is the loss of diversity since most of the evolutionary algorithms designed for MMO prefer the base algorithm with rapid convergence. Therefore, the extra niching or other diversity preserving mechanism is inevitable. The other is the distribution of the Pareto optimal solutions with imbalanced density. Since the Pareto optimal sets may show different characteristics in the decision space, it is tough to converge the solutions to the Pareto front uniformly. To address these issues, subset selection and manifold learning based competitive swarm optimization algorithm, namely MMO_CSO, is proposed. Competitive swarm optimizer which has well balance on both diversity and convergence is adopted. Moreover, a subset selection strategy is applied to select diversified individuals for learning the manifold structure of the Pareto set. Thereby, the subset selection based manifold learning mechanism is designed to generate the promising solutions which could approach the real Pareto solutions and fill the sparse Pareto subregion. Compared against six state-of-the-art peer algorithms, the proposed MMO_CSO has a better performance to search for the Pareto optimal solutions both in decision space and objective space on CEC2019 MMO benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无敌阿东发布了新的文献求助10
刚刚
bycq发布了新的文献求助10
刚刚
1秒前
毛豆应助lily采纳,获得10
2秒前
万轻舟完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
5秒前
1391451653完成签到,获得积分10
5秒前
咖啡味椰果完成签到 ,获得积分10
6秒前
靜心发布了新的文献求助20
7秒前
7秒前
123发布了新的文献求助10
8秒前
万轻舟发布了新的文献求助30
8秒前
Cody发布了新的文献求助10
8秒前
ZZzz发布了新的文献求助10
9秒前
10秒前
思源应助地平采纳,获得10
11秒前
薰硝壤应助梨梨梨采纳,获得80
12秒前
石头发布了新的文献求助10
12秒前
13秒前
yufanhui应助要吃虾饺吗采纳,获得10
14秒前
科研通AI2S应助要吃虾饺吗采纳,获得10
14秒前
自然天思完成签到,获得积分10
15秒前
乐乐应助王ccccc采纳,获得10
15秒前
科研通AI2S应助maxwell158采纳,获得10
16秒前
8R60d8应助Cody采纳,获得10
16秒前
孙成成完成签到 ,获得积分10
16秒前
袁小红完成签到 ,获得积分10
18秒前
科研通AI2S应助YKH采纳,获得10
19秒前
陶醉完成签到,获得积分10
22秒前
上进生发布了新的文献求助10
22秒前
22秒前
Owen应助lxl1996采纳,获得10
24秒前
25秒前
玺月洛离发布了新的文献求助20
26秒前
北冥有鱼完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083