Competitive swarm optimization with subset selection based manifold learning for multimodal multi-objective optimization

数学优化 多目标优化 群体行为 趋同(经济学) 计算机科学 选择(遗传算法) 歧管(流体力学) 帕累托原理 空格(标点符号) 数学 人工智能 工程类 机械工程 经济 经济增长 操作系统
作者
Weiwei Zhang,Yan Fan,Gary G. Yen,F. Wang,Guoqing Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:654: 119860-119860
标识
DOI:10.1016/j.ins.2023.119860
摘要

There are two major challenges when handling the multimodal multi-objective optimization (MMO) problems. One is the loss of diversity since most of the evolutionary algorithms designed for MMO prefer the base algorithm with rapid convergence. Therefore, the extra niching or other diversity preserving mechanism is inevitable. The other is the distribution of the Pareto optimal solutions with imbalanced density. Since the Pareto optimal sets may show different characteristics in the decision space, it is tough to converge the solutions to the Pareto front uniformly. To address these issues, subset selection and manifold learning based competitive swarm optimization algorithm, namely MMO_CSO, is proposed. Competitive swarm optimizer which has well balance on both diversity and convergence is adopted. Moreover, a subset selection strategy is applied to select diversified individuals for learning the manifold structure of the Pareto set. Thereby, the subset selection based manifold learning mechanism is designed to generate the promising solutions which could approach the real Pareto solutions and fill the sparse Pareto subregion. Compared against six state-of-the-art peer algorithms, the proposed MMO_CSO has a better performance to search for the Pareto optimal solutions both in decision space and objective space on CEC2019 MMO benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
stars发布了新的文献求助10
2秒前
小霸王完成签到,获得积分10
2秒前
科研通AI5应助SppikeFPS采纳,获得10
2秒前
小屋完成签到,获得积分10
2秒前
航十二完成签到,获得积分10
4秒前
WQY发布了新的文献求助10
4秒前
魏某某发布了新的文献求助10
6秒前
梦鱼完成签到,获得积分10
7秒前
7秒前
wanci应助LZY采纳,获得10
8秒前
华仔应助学术五车采纳,获得10
9秒前
Komorebi完成签到,获得积分10
9秒前
WH完成签到,获得积分10
10秒前
dd完成签到 ,获得积分10
10秒前
Ava应助MissXia采纳,获得10
10秒前
关心完成签到,获得积分10
10秒前
10秒前
bbf8906完成签到,获得积分10
13秒前
13秒前
幸福的秋烟完成签到,获得积分10
14秒前
布响丸辣发布了新的文献求助10
14秒前
林安笙完成签到,获得积分10
14秒前
swy发布了新的文献求助10
16秒前
5266完成签到,获得积分10
16秒前
17秒前
17秒前
yu完成签到 ,获得积分10
18秒前
小虎应助啥名都行采纳,获得10
18秒前
XSB完成签到,获得积分10
19秒前
MQY发布了新的文献求助10
19秒前
20秒前
Lu应助letter采纳,获得10
21秒前
我是老大应助bertha325采纳,获得10
21秒前
Fff发布了新的文献求助10
22秒前
熊大发布了新的文献求助10
23秒前
yuxia完成签到 ,获得积分20
24秒前
LuoPanpan完成签到,获得积分10
24秒前
dreamboat完成签到 ,获得积分10
25秒前
淡淡的无敌关注了科研通微信公众号
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544452
求助须知:如何正确求助?哪些是违规求助? 3976555
关于积分的说明 12314408
捐赠科研通 3644598
什么是DOI,文献DOI怎么找? 2007103
邀请新用户注册赠送积分活动 1042519
科研通“疑难数据库(出版商)”最低求助积分说明 931602