Competitive swarm optimization with subset selection based manifold learning for multimodal multi-objective optimization

数学优化 多目标优化 群体行为 趋同(经济学) 计算机科学 选择(遗传算法) 歧管(流体力学) 帕累托原理 空格(标点符号) 数学 人工智能 工程类 机械工程 经济 经济增长 操作系统
作者
Weiwei Zhang,Yan Fan,Gary G. Yen,F. Wang,Guoqing Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:654: 119860-119860
标识
DOI:10.1016/j.ins.2023.119860
摘要

There are two major challenges when handling the multimodal multi-objective optimization (MMO) problems. One is the loss of diversity since most of the evolutionary algorithms designed for MMO prefer the base algorithm with rapid convergence. Therefore, the extra niching or other diversity preserving mechanism is inevitable. The other is the distribution of the Pareto optimal solutions with imbalanced density. Since the Pareto optimal sets may show different characteristics in the decision space, it is tough to converge the solutions to the Pareto front uniformly. To address these issues, subset selection and manifold learning based competitive swarm optimization algorithm, namely MMO_CSO, is proposed. Competitive swarm optimizer which has well balance on both diversity and convergence is adopted. Moreover, a subset selection strategy is applied to select diversified individuals for learning the manifold structure of the Pareto set. Thereby, the subset selection based manifold learning mechanism is designed to generate the promising solutions which could approach the real Pareto solutions and fill the sparse Pareto subregion. Compared against six state-of-the-art peer algorithms, the proposed MMO_CSO has a better performance to search for the Pareto optimal solutions both in decision space and objective space on CEC2019 MMO benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独角兽完成签到 ,获得积分10
4秒前
药化的彦祖完成签到,获得积分10
7秒前
Yyyyy完成签到,获得积分10
8秒前
斯文败类应助芋泥采纳,获得30
9秒前
思源应助nimo采纳,获得10
11秒前
充电宝应助清脆碧空采纳,获得10
14秒前
Orange应助zxc1064v采纳,获得10
15秒前
17秒前
dsf完成签到,获得积分10
19秒前
风中黎昕完成签到 ,获得积分10
20秒前
cllg发布了新的文献求助10
21秒前
halabouqii发布了新的文献求助10
21秒前
浮生如梦完成签到,获得积分10
22秒前
lxdfrank完成签到,获得积分10
23秒前
25秒前
FIN应助yi采纳,获得60
29秒前
SYLH应助小蓬牖采纳,获得10
31秒前
搞怪的念柏完成签到,获得积分10
33秒前
在水一方应助感动代荷采纳,获得10
36秒前
二十二给二十二的求助进行了留言
38秒前
量子星尘发布了新的文献求助10
38秒前
Owen应助潺潺流水采纳,获得10
41秒前
SSQY发布了新的文献求助10
41秒前
秋刀鱼完成签到,获得积分10
42秒前
42秒前
42秒前
zzn完成签到,获得积分10
43秒前
44秒前
jiajia发布了新的文献求助10
47秒前
朱文韬发布了新的文献求助10
47秒前
感动代荷发布了新的文献求助10
49秒前
50秒前
wshwx发布了新的文献求助10
50秒前
zzhui完成签到 ,获得积分10
53秒前
小马甲应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
Owen应助科研通管家采纳,获得10
54秒前
orixero应助科研通管家采纳,获得10
54秒前
科目三应助科研通管家采纳,获得10
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844