A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers

计算流体力学 燃烧 锅炉(水暖) 人工神经网络 计算机模拟 有限元法 近似误差 计算机科学 算法 工程类 模拟 机械工程 人工智能 结构工程 航空航天工程 有机化学 化学 废物管理
作者
Wenyuan Xue,Zhenhao Tang,Shengxian Cao,Manli Lv,Bo Zhao,Gong Wang
出处
期刊:Energy [Elsevier]
卷期号:286: 129568-129568 被引量:6
标识
DOI:10.1016/j.energy.2023.129568
摘要

Three-dimensional (3D) reconstructions of temperature distributions can be used to effectively design power plants and ensure production safety. Typically, 3D temperature reconstruction based on the flame image processing technology and finite element calculation of furnace combustion using computational fluid dynamics (CFD) simulation are performed to obtain the furnace temperature field. In this study, a novel online method that overcomes the defects of image detection devices was proposed for reconstructing the temperature field with improved evaluation accuracy. Numerical simulations were used to perform numerous calculations. In this method, deep neural network (DNN) models were used for reconstructing the 3D temperature distribution. The training set was derived from offline CFD simulations that were set for a specific boiler and a series of typical working conditions. Based on established DNN models, the online calculation of 3D temperature distribution was realized for current operating conditions. The result revealed that the furnace temperature field could be accurately reconstructed online in a 350-MW tangentially fired boiler. Compared with the numerical simulation results, the mean absolute percent error under the tilt angles of 0°, 10°, and −10° were 3.61 %, 4.25 %, and 4.52 %. The proposed integrated method was applied to actual boilers with average error 3.448 % and achieved feasible solutions within 20 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4114完成签到,获得积分10
刚刚
搜集达人应助深情雨泽采纳,获得10
刚刚
可爱的函函应助大胆芯采纳,获得10
3秒前
直率小霜发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
TT完成签到,获得积分10
5秒前
byy发布了新的文献求助10
7秒前
7秒前
www发布了新的文献求助10
7秒前
Ava应助Angora采纳,获得10
8秒前
9秒前
稀尔发布了新的文献求助10
9秒前
9秒前
在水一方应助王jj采纳,获得10
9秒前
10秒前
YW_ALLIN发布了新的文献求助10
10秒前
九仙过海应助goldNAN采纳,获得10
10秒前
aaaaa发布了新的文献求助10
10秒前
小波波波完成签到,获得积分10
11秒前
热情魔镜完成签到,获得积分10
12秒前
风趣的老太完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
14秒前
星辰大海应助一只猪仔777采纳,获得10
14秒前
14秒前
十一应助wjy321采纳,获得10
14秒前
14秒前
小紫发布了新的文献求助10
15秒前
李哈哈发布了新的文献求助10
15秒前
鸠摩智发布了新的文献求助10
15秒前
大海是大海完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712429
求助须知:如何正确求助?哪些是违规求助? 5209804
关于积分的说明 15267369
捐赠科研通 4864354
什么是DOI,文献DOI怎么找? 2611366
邀请新用户注册赠送积分活动 1561656
关于科研通互助平台的介绍 1518919