A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers

计算流体力学 燃烧 锅炉(水暖) 人工神经网络 计算机模拟 有限元法 近似误差 计算机科学 算法 工程类 模拟 机械工程 人工智能 结构工程 航空航天工程 有机化学 化学 废物管理
作者
Wenyuan Xue,Zhenhao Tang,Shengxian Cao,Manli Lv,Bo Zhao,Gong Wang
出处
期刊:Energy [Elsevier]
卷期号:286: 129568-129568 被引量:6
标识
DOI:10.1016/j.energy.2023.129568
摘要

Three-dimensional (3D) reconstructions of temperature distributions can be used to effectively design power plants and ensure production safety. Typically, 3D temperature reconstruction based on the flame image processing technology and finite element calculation of furnace combustion using computational fluid dynamics (CFD) simulation are performed to obtain the furnace temperature field. In this study, a novel online method that overcomes the defects of image detection devices was proposed for reconstructing the temperature field with improved evaluation accuracy. Numerical simulations were used to perform numerous calculations. In this method, deep neural network (DNN) models were used for reconstructing the 3D temperature distribution. The training set was derived from offline CFD simulations that were set for a specific boiler and a series of typical working conditions. Based on established DNN models, the online calculation of 3D temperature distribution was realized for current operating conditions. The result revealed that the furnace temperature field could be accurately reconstructed online in a 350-MW tangentially fired boiler. Compared with the numerical simulation results, the mean absolute percent error under the tilt angles of 0°, 10°, and −10° were 3.61 %, 4.25 %, and 4.52 %. The proposed integrated method was applied to actual boilers with average error 3.448 % and achieved feasible solutions within 20 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Denmark发布了新的文献求助10
1秒前
6666发布了新的文献求助10
1秒前
枫星羽完成签到,获得积分10
4秒前
蓝绝发布了新的文献求助10
4秒前
何必在乎发布了新的文献求助10
4秒前
无花果应助zyl采纳,获得10
5秒前
无花果应助Sherlly采纳,获得10
5秒前
5秒前
5秒前
ding应助迷人雪碧采纳,获得10
6秒前
Yue完成签到,获得积分10
6秒前
6秒前
善良宛筠完成签到,获得积分10
6秒前
李爱国应助大玉124采纳,获得20
7秒前
7秒前
科研通AI6应助吧唧采纳,获得10
8秒前
SciGPT应助Msure采纳,获得10
9秒前
小鱼完成签到,获得积分10
9秒前
10秒前
安详的白云完成签到,获得积分10
10秒前
Ava应助个性的荆采纳,获得10
11秒前
honda完成签到,获得积分10
11秒前
小新完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
mengzhao完成签到,获得积分10
12秒前
动听的笑南完成签到,获得积分10
12秒前
肉包子完成签到,获得积分10
13秒前
13秒前
欢--发布了新的文献求助10
15秒前
大个应助善良宛筠采纳,获得10
15秒前
Man发布了新的文献求助10
16秒前
哒哒哒发布了新的文献求助10
17秒前
fryeia完成签到,获得积分10
17秒前
18秒前
ZZICU完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798