Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM

自闭症谱系障碍 计算机科学 自闭症 机器学习 人工智能 模式识别(心理学) 发展心理学 心理学
作者
Abdullah Lakhan,Mazin Abed Mohammed,Karrar Hameed Abdulkareem,Hassen Hamouda,Saleh Alyahya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107539-107539 被引量:28
标识
DOI:10.1016/j.compbiomed.2023.107539
摘要

The incidence of Autism Spectrum Disorder (ASD) among children, attributed to genetics and environmental factors, has been increasing daily. ASD is a non-curable neurodevelopmental disorder that affects children's communication, behavior, social interaction, and learning skills. While machine learning has been employed for ASD detection in children, existing ASD frameworks offer limited services to monitor and improve the health of ASD patients. This paper presents a complex and efficient ASD framework with comprehensive services to enhance the results of existing ASD frameworks. Our proposed approach is the Federated Learning-enabled CNN-LSTM (FCNN-LSTM) scheme, designed for ASD detection in children using multimodal datasets. The ASD framework is built in a distributed computing environment where different ASD laboratories are connected to the central hospital. The FCNN-LSTM scheme enables local laboratories to train and validate different datasets, including Ages and Stages Questionnaires (ASQ), Facial Communication and Symbolic Behavior Scales (CSBS) Dataset, Parents Evaluate Developmental Status (PEDS), Modified Checklist for Autism in Toddlers (M-CHAT), and Screening Tool for Autism in Toddlers and Children (STAT) datasets, on different computing laboratories. To ensure the security of patient data, we have implemented a security mechanism based on advanced standard encryption (AES) within the federated learning environment. This mechanism allows all laboratories to offload and download data securely. We integrate all trained datasets into the aggregated nodes and make the final decision for ASD patients based on the decision process tree. Additionally, we have designed various Internet of Things (IoT) applications to improve the efficiency of ASD patients and achieve more optimal learning results. Simulation results demonstrate that our proposed framework achieves an ASD detection accuracy of approximately 99% compared to all existing ASD frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LincLin发布了新的文献求助10
刚刚
YT完成签到,获得积分10
1秒前
1秒前
迟大猫应助天真的高山采纳,获得10
2秒前
2秒前
简单以宁2发布了新的文献求助10
3秒前
3秒前
4秒前
Cyber_relic完成签到,获得积分10
4秒前
科研通AI2S应助二二采纳,获得10
4秒前
寒冷的寻菱完成签到,获得积分10
5秒前
CodeCraft应助神勇的曼文采纳,获得10
6秒前
NexusExplorer应助小冬瓜采纳,获得10
6秒前
琉璃发布了新的文献求助10
7秒前
7秒前
yby发布了新的文献求助10
7秒前
8秒前
星辰大海应助Gin采纳,获得10
8秒前
Ava应助zyt采纳,获得10
8秒前
我是老大应助超级灰狼采纳,获得10
8秒前
小耶完成签到 ,获得积分10
9秒前
科研通AI5应助深情的幼南采纳,获得30
9秒前
脑洞疼应助静不净采纳,获得10
9秒前
可莉完成签到 ,获得积分10
10秒前
shy发布了新的文献求助10
10秒前
zhouhao完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
星辰大海应助郭小胖14采纳,获得10
11秒前
高高的新烟完成签到 ,获得积分10
12秒前
万能图书馆应助武玉坤采纳,获得10
12秒前
13秒前
李-发布了新的文献求助10
13秒前
张二狗完成签到,获得积分10
13秒前
科研通AI5应助zhangyulong采纳,获得10
13秒前
14秒前
14秒前
简单以宁2完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771