Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data

遥感 对偶(语法数字) 领域(数学) 融合 计算机科学 传感器融合 卫星 地理 人工智能 数学 文学类 工程类 哲学 艺术 航空航天工程 语言学 纯数学
作者
Zhiwen Cai,Qiong Hu,Xinyu Zhang,Jingya Yang,Haodong Wei,Jiayue Wang,Yelu Zeng,Gaofei Yin,Wenjuan Li,Liangzhi You,Baodong Xu,Zhihua Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:205: 34-49 被引量:56
标识
DOI:10.1016/j.isprsjprs.2023.09.021
摘要

Accurate spatial information for agricultural field parcels is important for agricultural production management and understanding agro-industrialization and intensification. However, traditional remote sensing methods that rely on single-modal or single-date data struggle to identify heterogeneous field parcels, particularly in regions dominated by smallholder farming systems. To address this challenge, we proposed a Dual branch Spatiotemporal Fusion Network (DSTFNet) that integrated very high-resolution (VHR) images and medium-resolution satellite image time series (MRSITS) to extract agricultural field parcels over various landscapes. The DSTFNet consisted of two branches: a spatial branch that extracted spatial features from VHR images and a temporal branch that explored seasonal spectral dynamics from MRSITS data by using ConvLSTM units and an attention module. We evaluated the DSTFNet in four regions across China by using GF-2 and Sentinel-2 data. The results showed that DSTFNet performed well in delineating agricultural field parcels, achieving the highest Matthew’s correlation coefficient (MCC) = 0.823 for the field extent, the highest F1-score of edge (Fedge) = 0.865 for field boundary, and the lowest errors of segmentation evaluation index (SEI) = 0.191 for the vectorized field parcels in Hubei province. In addition, DSTFNet significantly outperformed two single-branch models that used VHR or MRSITS alone, as well as existing BsiNet, ResUNet_a, UNet and RAUNet models. DSTFNet also showed good spatial transferability in distinct regions without training data (on average, MCC = 0.728, Fedge = 0.729, and SEI = 0.281 for three target regions). Using limited training data to fine-tune the DSTFNet can further improve its ability to delineate field parcels over complex regions. The visualization analysis of temporal attention weights demonstrated that DSTFNet can well capture cropland spectral dynamics, making it advantageous in extracting diverse cropland parcels. By exploiting important spectral, spatial and temporal information from multimodal satellite data, DSTFNet provided an effective, robust, and transferable solution for accurately delineating agricultural field parcels across heterogeneous farming systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XS_QI发布了新的文献求助10
4秒前
从从余余完成签到 ,获得积分10
6秒前
7秒前
anjin完成签到 ,获得积分10
8秒前
斑ban发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
李健的小迷弟应助pistachio采纳,获得10
12秒前
大模型应助海绵宝宝采纳,获得10
15秒前
斑ban完成签到,获得积分20
18秒前
czx发布了新的文献求助10
22秒前
23秒前
舍予完成签到 ,获得积分20
24秒前
28秒前
海绵宝宝发布了新的文献求助10
29秒前
BaekHyun完成签到 ,获得积分10
34秒前
稳重的蛟凤应助南枳采纳,获得10
39秒前
朴素海亦发布了新的文献求助10
44秒前
qiaqia0326完成签到 ,获得积分10
45秒前
47秒前
卡坦精发布了新的文献求助10
54秒前
yiyi发布了新的文献求助10
58秒前
隐形曼青应助拼搏麦片采纳,获得10
1分钟前
Orange应助Hiky_0703采纳,获得10
1分钟前
1分钟前
mao完成签到 ,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847481
求助须知:如何正确求助?哪些是违规求助? 6226602
关于积分的说明 15620255
捐赠科研通 4964154
什么是DOI,文献DOI怎么找? 2676451
邀请新用户注册赠送积分活动 1621016
关于科研通互助平台的介绍 1576953