中间性中心性
中心性
节点(物理)
亲密度
计算机科学
排名(信息检索)
贸易引力模型
复杂网络
数据挖掘
理论计算机科学
人工智能
数学
物理
统计
业务
数学分析
量子力学
万维网
国际贸易
作者
Nan Xiang,Xiao Tang,Huiling Liu,Xiaoxia Ma
标识
DOI:10.1093/comjnl/bxad097
摘要
Abstract Identifying crucial nodes in complex networks is paid more attention in recent years. Some classical methods, such as degree centrality, betweenness centrality and closeness centrality, have their advantages and disadvantages. Recently, the gravity model is applied to describe the relationship of nodes in a complex network. However, the interaction force in gravity model follows the square law of distance, which is inconsistent with the actual situation. Most people are generally affected by those who are surrounding them, which means that local influence should be emphasized. To address this issue, we propose an indexing method called localized decreasing gravity centrality by maximizing the local influence of a node. In the proposed measure, the mass and radius of gravity model are redefined, which can represent the spreading ability of the node. In addition, a decreasing weight is added to strengthen the local influence of a node. To evaluate the performance of the proposed method, we utilize four different types of networks, including interaction networks, economic networks, collaboration networks and animal social networks. Also, two different infectious disease models, susceptible-infectious-recovered (SIR) and susceptible-exposed-low risk-high risk-recovered (SELHR), are utilized to examine the spreading ability of influential nodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI