Differentiating spinal pathologies by deep learning approach

医学 病态的 放射性武器 神经鞘瘤 放射科 活检 病理
作者
Oz Haim,Ariel Agur,Segev Gabay,Lee Azolai,Itay Shutan,May Chitayat,Michal Katirai,Sapir Sadon,Moran Artzi,Zvi Lidar
出处
期刊:The Spine Journal [Elsevier]
卷期号:24 (2): 297-303 被引量:2
标识
DOI:10.1016/j.spinee.2023.09.019
摘要

BACKGROUND CONTEXT Spinal pathologies are diverse in nature and, excluding trauma and degenerative diseases, includes infectious, neoplastic (either extradural or intradural) and inflammatory conditions. The preoperative diagnosis is made with clinical judgment incorporating lab findings and radiological studies. When the diagnosis is uncertain, a biopsy is almost always mandatory since the treatment is dictated by the type of pathology. This is an invasive, timely and costly process. PURPOSE The aim of this study was to develop a deep learning (DL) algorithm, based on preoperative MRI and post-operative pathological results, to differentiate between leading spinal pathologies. STUDY DESIGN We retrospectively collected and analyzed clinical, radiological, and pathological data of patients who underwent spinal surgery or biopsy for various spinal pathologies between 2008-2022 at a tertiary center. The patients were stratified according to their pathological reports (the threshold for inclusion was set to 25 patients per diagnosis). METHODS Preoperative MRI, clinical data and pathological results were processed by a deep learning model built on the Fast.ai framework on top of the PyTorch environment. RESULTS Two-hundred and thirty-one patients diagnosed with carcinoma (80), infection (57), meningioma (52) or schwannoma (42), were included in our model. The mean overall accuracy was 0.78±0.06 for the validation, and 0.93±0.03 for the test dataset. CONCLUSION DL algorithm for differentiation between the aforementioned spinal pathologies, based solely on clinical MRI, proves as a feasible primary diagnostic modality. Larger studies should be performed to validate and improve this algorithm for clinical use. CLINICAL SIGNIFICANCE This study provides a proof-of-concept for predicting spinal pathologies solely by MRI based DL technology, allowing for a rapid, targeted and cost-effective work-up and subsequent treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
奚斌完成签到,获得积分10
2秒前
背后访风发布了新的文献求助10
3秒前
wzyyyyy完成签到,获得积分10
5秒前
公冶愚志发布了新的文献求助10
5秒前
喜悦的立轩完成签到,获得积分20
6秒前
7秒前
8秒前
今后应助长孙兰溪采纳,获得10
8秒前
小白完成签到,获得积分10
9秒前
peiyy完成签到,获得积分10
9秒前
尽力发布了新的文献求助30
9秒前
十三发布了新的文献求助10
12秒前
爆米花应助ZDY采纳,获得10
13秒前
公冶愚志完成签到,获得积分10
13秒前
13秒前
15秒前
社牛小柯完成签到,获得积分10
15秒前
15秒前
LELE完成签到,获得积分20
15秒前
安卉完成签到 ,获得积分10
15秒前
16秒前
阳地黄完成签到,获得积分10
17秒前
爆米花应助spurs17采纳,获得10
17秒前
18秒前
核磁共振经颅磁完成签到,获得积分10
19秒前
魏雁梅发布了新的文献求助10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
21秒前
大模型应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
22秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291