超级电容器
碳化
材料科学
电解质
聚丙烯酸钠
化学工程
电容
电化学
功率密度
碳纤维
比表面积
电极
复合材料
化学
有机化学
扫描电子显微镜
原材料
功率(物理)
物理
物理化学
量子力学
复合数
工程类
催化作用
作者
Yude Zhang,Fuyao Deng,Qian Zhang,Yan Li,Yuanyuan Li,Jinli Shang,Jiebin Wang,Rongjun Gao,Ru Li
标识
DOI:10.1016/j.est.2023.109098
摘要
A sodium polyacrylate-based porous carbon was fabricated by direct carbonization without additional activator and template. The by-products of Na2CO3 and CO formed in pyrolysis process of precursor served as self-template, self-activation agent, and pore-forming agent. The effects of carbonization temperature and atmosphere type on the structure and electrochemical performance for the resulted porous carbon were investigated. The optimized sodium polyacrylate-based porous carbon (PC-600) synthesized at 600 °C under argon (Ar) atmosphere exhibits exceptional capacitance characteristics, a unique honeycomb-like structure, a large surface area of 1100 m2 g−1 and a moderate oxygen content of 7.8 %. PC-600 was identified as an advanced electrode material for supercapacitor assembly. In a three-electrode system with 6 M KOH electrolyte, PC-600 suggests a specific capacitance of 270 F g−1 at 1 A g−1 with a retention rate of 79 % at 20 A g−1. The symmetrical supercapacitor assembled using PC-600 shows a capacitance of 197 F g−1 and an energy density of 6.7 Wh kg−1 along with a 255.0 W kg−1 power density at 1 A g−1 in 6 M KOH, a 95 % capacity retention undergoing 10,000 cycles at 2 A g−1, and an approximate 100 % coulomb efficiency. Moreover, in 1 M Li2SO4 electrolyte, the PC-600 based supercapacitor delivers a 19.0 Wh kg−1 energy density along with a 489.0 W kg−1 power density, and still deserves 9.0 Wh kg−1 even at 1.8 KW kg−1. This study demonstrates that the porous carbon derived from sodium polyacrylate exhibits an outstanding electrochemical performance while providing practical value-added exploitation ideas for polymer use in electrochemical energy storage fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI